These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 3118376)

  • 1. Comparison of the effects of microtubule-associated protein 2 and tau on the packing density of in vitro assembled microtubules.
    Black MM
    Proc Natl Acad Sci U S A; 1987 Nov; 84(21):7783-7. PubMed ID: 3118376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Packing volume of sedimented microtubules: regulation and potential relationship to an intracellular matrix.
    Brown PA; Berlin RD
    J Cell Biol; 1985 Oct; 101(4):1492-500. PubMed ID: 2864347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of active tubulin and microtubule-associated proteins by ultracentrifugation and isolation of a component causing the formation of microtubule bundles.
    Hamel E; Lin CM
    Biochemistry; 1984 Aug; 23(18):4173-84. PubMed ID: 6487596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of MAP 1, MAP 2, and tau-proteins on structural parameters of tubulin assemblies.
    Böhm KJ; Vater W; Steinmetzer P; Kusnetsov SA; Rodionov VI; Gelfand VI; Unger E
    Acta Histochem Suppl; 1990; 39():357-64. PubMed ID: 2127856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting roles of tau and microtubule-associated protein 2 in the vinblastine-induced aggregation of brain tubulin.
    Ludueña RF; Fellous A; McManus L; Jordan MA; Nunez J
    J Biol Chem; 1984 Oct; 259(20):12890-8. PubMed ID: 6436239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tau proteins: the molecular structure and mode of binding on microtubules.
    Hirokawa N; Shiomura Y; Okabe S
    J Cell Biol; 1988 Oct; 107(4):1449-59. PubMed ID: 3139677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The binding of MAP-2 and tau on brain microtubules in vitro: implications for microtubule structure.
    Kim H; Jensen CG; Rebhun LI
    Ann N Y Acad Sci; 1986; 466():218-39. PubMed ID: 3089106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the hydrodynamic properties of microtubules induced by taxol.
    Wallin M; Nordh J; Deinum J
    Biochim Biophys Acta; 1986 Feb; 880(2-3):189-96. PubMed ID: 2867785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three distinct axonal transport rates for tau, tubulin, and other microtubule-associated proteins: evidence for dynamic interactions of tau with microtubules in vivo.
    Mercken M; Fischer I; Kosik KS; Nixon RA
    J Neurosci; 1995 Dec; 15(12):8259-67. PubMed ID: 8613759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of brain mitochondria with microtubules reconstituted from brain tubulin and MAP2 or TAU.
    Jung D; Filliol D; Miehe M; Rendon A
    Cell Motil Cytoskeleton; 1993; 24(4):245-55. PubMed ID: 8097434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in surface morphology of microtubules reconstituted from pure brain tubulin using two different microtubule-associated proteins: the high molecular weight MAP 2 proteins and tau proteins.
    Zingsheim HP; Herzog W; Weber K
    Eur J Cell Biol; 1979 Jun; 19(2):175-83. PubMed ID: 467462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo and in vitro studies on the role of HMW-MAPs in taxol-induced microtubule bundling.
    Albertini DF; Herman B; Sherline P
    Eur J Cell Biol; 1984 Jan; 33(1):134-43. PubMed ID: 6141942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments.
    Al-Bassam J; Ozer RS; Safer D; Halpain S; Milligan RA
    J Cell Biol; 2002 Jun; 157(7):1187-96. PubMed ID: 12082079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 205 kDa protein from non-neuronal cells in culture contains tubulin binding epitopes.
    Vial C; Armas-Portela R; Avila J; González M; Maccioni RB
    Mol Cell Biochem; 1995 Mar; 144(2):109-116. PubMed ID: 7542740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association between endocrine pancreatic secretory granules and in-vitro-assembled microtubules is dependent upon microtubule-associated proteins.
    Suprenant KA; Dentler WL
    J Cell Biol; 1982 Apr; 93(1):164-74. PubMed ID: 7040413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature sensitivity of vinblastine-induced tubulin polymerization in the presence of microtubule-associated proteins.
    Prasad V; Jordan MA; Ludueña RF
    J Protein Chem; 1992 Oct; 11(5):509-15. PubMed ID: 1449600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a new microtubule-interacting protein Mip-90.
    González M; Cambiazo V; Maccioni RB
    Eur J Cell Biol; 1995 Jun; 67(2):158-69. PubMed ID: 7664757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stiff microtubules and neuronal morphology.
    Matus A
    Trends Neurosci; 1994 Jan; 17(1):19-22. PubMed ID: 7511844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taxol-induced bundling of brain-derived microtubules.
    Turner PF; Margolis RL
    J Cell Biol; 1984 Sep; 99(3):940-6. PubMed ID: 6147357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of brain tubulin and microtubules.
    Sato M; Schwartz WH; Selden SC; Pollard TD
    J Cell Biol; 1988 Apr; 106(4):1205-11. PubMed ID: 3360851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.