BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 31183862)

  • 1. Growth differentiation factor 11 locally controls anterior-posterior patterning of the axial skeleton.
    Suh J; Eom JH; Kim NK; Woo KM; Baek JH; Ryoo HM; Lee SJ; Lee YS
    J Cell Physiol; 2019 Dec; 234(12):23360-23368. PubMed ID: 31183862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11.
    McPherron AC; Lawler AM; Lee SJ
    Nat Genet; 1999 Jul; 22(3):260-4. PubMed ID: 10391213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth differentiation factor 11 signaling controls retinoic acid activity for axial vertebral development.
    Lee YJ; McPherron A; Choe S; Sakai Y; Chandraratna RA; Lee SJ; Oh SP
    Dev Biol; 2010 Nov; 347(1):195-203. PubMed ID: 20801112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb.
    Gamer LW; Cox KA; Small C; Rosen V
    Dev Biol; 2001 Jan; 229(2):407-20. PubMed ID: 11203700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth differentiation factor 11 signals through the transforming growth factor-beta receptor ALK5 to regionalize the anterior-posterior axis.
    Andersson O; Reissmann E; Ibáñez CF
    EMBO Rep; 2006 Aug; 7(8):831-7. PubMed ID: 16845371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic over-expression of growth differentiation factor 11 propeptide in skeleton results in transformation of the seventh cervical vertebra into a thoracic vertebra.
    Li Z; Kawasumi M; Zhao B; Moisyadi S; Yang J
    Mol Reprod Dev; 2010 Nov; 77(11):990-7. PubMed ID: 21049546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redundancy of myostatin and growth/differentiation factor 11 function.
    McPherron AC; Huynh TV; Lee SJ
    BMC Dev Biol; 2009 Mar; 9():24. PubMed ID: 19298661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GDF11 promotes osteogenesis as opposed to MSTN, and follistatin, a MSTN/GDF11 inhibitor, increases muscle mass but weakens bone.
    Suh J; Kim NK; Lee SH; Eom JH; Lee Y; Park JC; Woo KM; Baek JH; Kim JE; Ryoo HM; Lee SJ; Lee YS
    Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4910-4920. PubMed ID: 32071240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activin type IIA and IIB receptors mediate Gdf11 signaling in axial vertebral patterning.
    Oh SP; Yeo CY; Lee Y; Schrewe H; Whitman M; Li E
    Genes Dev; 2002 Nov; 16(21):2749-54. PubMed ID: 12414726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cdx1 and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis elongation.
    van den Akker E; Forlani S; Chawengsaksophak K; de Graaff W; Beck F; Meyer BI; Deschamps J
    Development; 2002 May; 129(9):2181-93. PubMed ID: 11959827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foxg1 promotes olfactory neurogenesis by antagonizing Gdf11.
    Kawauchi S; Kim J; Santos R; Wu HH; Lander AD; Calof AL
    Development; 2009 May; 136(9):1453-64. PubMed ID: 19297409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axis development: the mouse becomes a dachshund.
    Gad JM; Tam PP
    Curr Biol; 1999 Oct; 9(20):R783-6. PubMed ID: 10531023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth differentiation factor 11 is a protective factor for osteoblastogenesis by targeting PPARgamma.
    Zhang Y; Shao J; Wang Z; Yang T; Liu S; Liu Y; Fan X; Ye W
    Gene; 2015 Feb; 557(2):209-14. PubMed ID: 25534870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tail Bud Progenitor Activity Relies on a Network Comprising Gdf11, Lin28, and Hox13 Genes.
    Aires R; de Lemos L; Nóvoa A; Jurberg AD; Mascrez B; Duboule D; Mallo M
    Dev Cell; 2019 Feb; 48(3):383-395.e8. PubMed ID: 30661984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of metanephric kidney development by growth/differentiation factor 11.
    Esquela AF; Lee SJ
    Dev Biol; 2003 May; 257(2):356-70. PubMed ID: 12729564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos.
    Jurberg AD; Aires R; Varela-Lasheras I; Nóvoa A; Mallo M
    Dev Cell; 2013 Jun; 25(5):451-62. PubMed ID: 23763947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Cre-mediated genetic deletion of
    Garbern J; Kristl AC; Bassaneze V; Vujic A; Schoemaker H; Sereda R; Peng L; Ricci-Blair EM; Goldstein JM; Walker RG; Bhasin S; Wagers AJ; Lee RT
    Am J Physiol Heart Circ Physiol; 2019 Jul; 317(1):H201-H212. PubMed ID: 31125255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking constraint of mammalian axial formulae.
    Hauswirth GM; Garside VC; Wong LSF; Bildsoe H; Manent J; Chang YC; Nefzger CM; Firas J; Chen J; Rossello FJ; Polo JM; McGlinn E
    Nat Commun; 2022 Jan; 13(1):243. PubMed ID: 35017475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role and regulation of GDF11 in Smad2 activation during tailbud formation in the Xenopus embryo.
    Ho DM; Yeo CY; Whitman M
    Mech Dev; 2010; 127(9-12):485-95. PubMed ID: 20807570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2.
    Lee YS; Lee SJ
    Proc Natl Acad Sci U S A; 2013 Sep; 110(39):E3713-22. PubMed ID: 24019467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.