These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31183907)

  • 1. Enhancing Interconnect Reliability and Performance by Converting Tantalum to 2D Layered Tantalum Sulfide at Low Temperature.
    Lo CL; Catalano M; Khosravi A; Ge W; Ji Y; Zemlyanov DY; Wang L; Addou R; Liu Y; Wallace RM; Kim MJ; Chen Z
    Adv Mater; 2019 Jul; 31(30):e1902397. PubMed ID: 31183907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of nitrogen diffusion profile of low resistivity diffusion barrier by resputtering technology.
    Tsao JC; Liu CP; Wang YL; Chen KW
    J Nanosci Nanotechnol; 2009 Feb; 9(2):759-63. PubMed ID: 19441387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of Ru passivation and doping on the barrier and seed layer properties of Ru-modified TaN for copper interconnects.
    Kondati Natarajan S; Nies CL; Nolan M
    J Chem Phys; 2020 Apr; 152(14):144701. PubMed ID: 32295379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoS
    Kuo CY; Chang YT; Huang YT; Ni IC; Chen MH; Wu CI
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47845-47854. PubMed ID: 37768847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Co alloy design for Co interconnects using a self-forming barrier layer.
    Kim C; Kang G; Jung Y; Kim JY; Lee GB; Hong D; Lee Y; Hwang SG; Jung IH; Joo YC
    Sci Rep; 2022 Jul; 12(1):12291. PubMed ID: 35853980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Barrier Layer of Cu Interconnects.
    Li Z; Tian Y; Teng C; Cao H
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33182434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of an Amorphous Carbon Layer as a Diffusion Barrier for an Advanced Copper Interconnect.
    An BS; Kwon Y; Oh JS; Lee C; Choi S; Kim H; Lee M; Pae S; Yang CW
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):3104-3113. PubMed ID: 31845581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amorphous Ta
    An BS; Kwon Y; Oh JS; Lee M; Pae S; Yang CW
    Sci Rep; 2019 Dec; 9(1):20132. PubMed ID: 31882921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-W Barrier Layers for Metallization of Copper Interconnects: Thermal Performance Analysis.
    Oliveira BMC; Santos RF; Piedade AP; Ferreira PJ; Vieira MF
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological Metal MoP Nanowire for Interconnect.
    Han HJ; Kumar S; Jin G; Ji X; Hart JL; Hynek DJ; Sam QP; Hasse V; Felser C; Cahill DG; Sundararaman R; Cha JJ
    Adv Mater; 2023 Mar; 35(13):e2208965. PubMed ID: 36745845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of the Cu morphology on Ru-passivated and Ru-doped TaN surfaces - promoting growth of 2D conducting copper for CMOS interconnects.
    Nies CL; Natarajan SK; Nolan M
    Chem Sci; 2022 Jan; 13(3):713-725. PubMed ID: 35173936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertical and Lateral Copper Transport through Graphene Layers.
    Li L; Chen X; Wang CH; Cao J; Lee S; Tang A; Ahn C; Singha Roy S; Arnold MS; Wong HS
    ACS Nano; 2015 Aug; 9(8):8361-7. PubMed ID: 26222951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanometer-thick copper films with low resistivity grown on 2D material surfaces.
    Liu YW; Zhang DJ; Tsai PC; Chiang CT; Tu WC; Lin SY
    Sci Rep; 2022 Feb; 12(1):1823. PubMed ID: 35110664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct alpha Ta formation on TaN by resputtering for low resistive diffusion barriers.
    Tsao JC; Liu CP; Wang YL; Chen KW
    J Nanosci Nanotechnol; 2008 May; 8(5):2582-7. PubMed ID: 18572688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-All-Around Cobalt Interconnect with a Back-End-of-Line Compatible Process.
    Kuo CY; Zhu JH; Chiu YP; Ni IC; Chen MH; Wu YR; Wu CI
    Nano Lett; 2024 Feb; 24(6):2102-2109. PubMed ID: 38295289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles investigation of copper diffusion barrier performance in defective 2D layered materials.
    Ahmed M; Li Y; Chen W; Li EP
    Nanotechnology; 2022 Jan; 33(16):. PubMed ID: 34986464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Materials Quest for Advanced Interconnect Metallization in Integrated Circuits.
    Moon JH; Jeong E; Kim S; Kim T; Oh E; Lee K; Han H; Kim YK
    Adv Sci (Weinh); 2023 Aug; 10(23):e2207321. PubMed ID: 37318187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper metallization for current very large scale integration.
    Jiang Q; Zhu YF; Zhao M
    Recent Pat Nanotechnol; 2011 Jun; 5(2):106-37. PubMed ID: 21529334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing Ultrathin 2D Transistors for Monolithic 3D Integration: A Study on Directly Grown Nanocrystalline Interconnects and Buried Contacts.
    Bae J; Ryu H; Kim D; Lee CS; Seol M; Byun KE; Kim S; Lee S
    Adv Mater; 2024 Jun; 36(26):e2314164. PubMed ID: 38608715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Thermal Boundary Resistance between the Interconnect Metal and Dielectric Interlayer on Temperature Increase of Interconnects in Deeply Scaled VLSI.
    Zhan T; Oda K; Ma S; Tomita M; Jin Z; Takezawa H; Mesaki K; Wu YJ; Xu Y; Matsukawa T; Matsuki T; Watanabe T
    ACS Appl Mater Interfaces; 2020 May; 12(19):22347-22356. PubMed ID: 32315529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.