These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 31183910)
1. Mitochondrial variation in small brown planthoppers linked to multiple traits and probably reflecting a complex evolutionary trajectory. Sun JT; Duan XZ; Hoffmann AA; Liu Y; Garvin MR; Chen L; Hu G; Zhou JC; Huang HJ; Xue XF; Hong XY Mol Ecol; 2019 Jul; 28(14):3306-3323. PubMed ID: 31183910 [TBL] [Abstract][Full Text] [Related]
2. The complete mitochondrial genomes of two rice planthoppers, Nilaparvata lugens and Laodelphax striatellus: conserved genome rearrangement in Delphacidae and discovery of new characteristics of atp8 and tRNA genes. Zhang KJ; Zhu WC; Rong X; Zhang YK; Ding XL; Liu J; Chen DS; Du Y; Hong XY BMC Genomics; 2013 Jun; 14():417. PubMed ID: 23799924 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial DNA diversity and population structure of Han L; Zhang JT; Wang MM; Zhu KX; Wang XY Mitochondrial DNA A DNA Mapp Seq Anal; 2020 Dec; 31(8):346-354. PubMed ID: 33030077 [TBL] [Abstract][Full Text] [Related]
4. A Comparative Analysis of Selection Pressures Suffered by Mitochondrial Genomes in Two Planthopper Species with Divergent Climate Distributions. Sun KK; Ding Y; Chen L; Sun JT Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069176 [TBL] [Abstract][Full Text] [Related]
5. Evidence for high dispersal ability and mito-nuclear discordance in the small brown planthopper, Laodelphax striatellus. Sun JT; Wang MM; Zhang YK; Chapuis MP; Jiang XY; Hu G; Yang XM; Ge C; Xue XF; Hong XY Sci Rep; 2015 Jan; 5():8045. PubMed ID: 25622966 [TBL] [Abstract][Full Text] [Related]
6. The complete mitochondrial genome sequence of Sogatella furcifera (Horváth) and a comparative mitogenomic analysis of three predominant rice planthoppers. Zhang KJ; Zhu WC; Rong X; Liu J; Ding XL; Hong XY Gene; 2014 Jan; 533(1):100-9. PubMed ID: 24120898 [TBL] [Abstract][Full Text] [Related]
7. Introgression of mitochondrial DNA promoted by natural selection in the Japanese pipistrelle bat (Pipistrellus abramus). Dong J; Mao X; Sun H; Irwin DM; Zhang S; Hua P Genetica; 2014 Dec; 142(6):483-94. PubMed ID: 25266707 [TBL] [Abstract][Full Text] [Related]
8. Experimental Support That Natural Selection Has Shaped the Latitudinal Distribution of Mitochondrial Haplotypes in Australian Drosophila melanogaster. Camus MF; Wolff JN; Sgrò CM; Dowling DK Mol Biol Evol; 2017 Oct; 34(10):2600-2612. PubMed ID: 28637217 [TBL] [Abstract][Full Text] [Related]
9. Positive and purifying selection in mitochondrial genomes of a bird with mitonuclear discordance. Morales HE; Pavlova A; Joseph L; Sunnucks P Mol Ecol; 2015 Jun; 24(11):2820-37. PubMed ID: 25876460 [TBL] [Abstract][Full Text] [Related]
10. Whole mitochondrial genome scan for population structure and selection in the Atlantic herring. Teacher AG; André C; Merilä J; Wheat CW BMC Evol Biol; 2012 Dec; 12():248. PubMed ID: 23259908 [TBL] [Abstract][Full Text] [Related]
11. Demography or selection on linked cultural traits or genes? Investigating the driver of low mtDNA diversity in the sperm whale using complementary mitochondrial and nuclear genome analyses. Morin PA; Foote AD; Baker CS; Hancock-Hanser BL; Kaschner K; Mate BR; Mesnick SL; Pease VL; Rosel PE; Alexander A Mol Ecol; 2018 Jun; 27(11):2604-2619. PubMed ID: 29675902 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial DNA genomes revealed different patterns of high-altitude adaptation in high-altitude Tajiks compared with Tibetans and Sherpas. Chen Y; Gong L; Liu X; Chen X; Yang S; Luo Y Sci Rep; 2020 Jun; 10(1):10592. PubMed ID: 32601317 [TBL] [Abstract][Full Text] [Related]
13. Climate-driven mitochondrial selection: A test in Australian songbirds. Lamb AM; Gan HM; Greening C; Joseph L; Lee YP; Morán-Ordóñez A; Sunnucks P; Pavlova A Mol Ecol; 2018 Feb; 27(4):898-918. PubMed ID: 29334409 [TBL] [Abstract][Full Text] [Related]
14. Adaptation of the Mitochondrial Genome in Cephalopods: Enhancing Proton Translocation Channels and the Subunit Interactions. Almeida D; Maldonado E; Vasconcelos V; Antunes A PLoS One; 2015; 10(8):e0135405. PubMed ID: 26285039 [TBL] [Abstract][Full Text] [Related]
15. Strong mitonuclear discordance in the phylogeny of Neodermata and evolutionary rates of Polyopisthocotylea. Zhang D; Jakovlić I; Zou H; Liu F; Xiang CY; Gusang Q; Tso S; Xue S; Zhu WJ; Li Z; Wu J; Wang GT Int J Parasitol; 2024 Apr; 54(5):213-223. PubMed ID: 38185351 [TBL] [Abstract][Full Text] [Related]
16. Intraspecific variation in the mitochondrial genome among local populations of Medaka Oryzias latipes. Hirayama M; Mukai T; Miya M; Murata Y; Sekiya Y; Yamashita T; Nishida M; Watabe S; Oda S; Mitani H Gene; 2010 Jun; 457(1-2):13-24. PubMed ID: 20193748 [TBL] [Abstract][Full Text] [Related]
17. mtDNA lineage expansions in Sherpa population suggest adaptive evolution in Tibetan highlands. Kang L; Zheng HX; Chen F; Yan S; Liu K; Qin Z; Liu L; Zhao Z; Li L; Wang X; He Y; Jin L Mol Biol Evol; 2013 Dec; 30(12):2579-87. PubMed ID: 24002810 [TBL] [Abstract][Full Text] [Related]
18. Adaptive Patterns of Mitogenome Evolution Are Associated with the Loss of Shell Scutes in Turtles. Escalona T; Weadick CJ; Antunes A Mol Biol Evol; 2017 Oct; 34(10):2522-2536. PubMed ID: 28591857 [TBL] [Abstract][Full Text] [Related]
19. The association between mitochondrial genetic variation and reduced colony fitness in an invasive wasp. Dobelmann J; Alexander A; Baty JW; Gemmell NJ; Gruber MAM; Quinn O; Wenseleers T; Lester PJ Mol Ecol; 2019 Jul; 28(14):3324-3338. PubMed ID: 31233636 [TBL] [Abstract][Full Text] [Related]
20. Mitonuclear epistasis, genotype-by-environment interactions, and personalized genomics of complex traits in Drosophila. Rand DM; Mossman JA; Zhu L; Biancani LM; Ge JY IUBMB Life; 2018 Dec; 70(12):1275-1288. PubMed ID: 30394643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]