These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31183914)

  • 1. In Situ Transmission Electron Microscopy for Energy Materials and Devices.
    Fan Z; Zhang L; Baumann D; Mei L; Yao Y; Duan X; Shi Y; Huang J; Huang Y; Duan X
    Adv Mater; 2019 Aug; 31(33):e1900608. PubMed ID: 31183914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research.
    Hodnik N; Dehm G; Mayrhofer KJ
    Acc Chem Res; 2016 Sep; 49(9):2015-22. PubMed ID: 27541965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ TEM Study on Conversion-Type Electrodes for Rechargeable Ion Batteries.
    Cui J; Zheng H; He K
    Adv Mater; 2021 Feb; 33(6):e2000699. PubMed ID: 32578290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress of In Situ Transmission Electron Microscopy for Energy Materials.
    Zhang C; Firestein KL; Fernando JFS; Siriwardena D; von Treifeldt JE; Golberg D
    Adv Mater; 2020 May; 32(18):e1904094. PubMed ID: 31566272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of liquid cell for in situ transmission electron microscopy of electrochemical processes.
    Yang R; Mei L; Fan Y; Zhang Q; Liao HG; Yang J; Li J; Zeng Z
    Nat Protoc; 2023 Feb; 18(2):555-578. PubMed ID: 36333447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ/Operando X-ray Spectroscopies for Advanced Investigation of Energy Materials.
    Dong CL; Vayssieres L
    Chemistry; 2018 Dec; 24(69):18356-18373. PubMed ID: 30300939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Electrochemistry of Rechargeable Battery Materials: Status Report and Perspectives.
    Yang Y; Liu X; Dai Z; Yuan F; Bando Y; Golberg D; Wang X
    Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28627135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms.
    Wang X; Weng Q; Yang Y; Bando Y; Golberg D
    Chem Soc Rev; 2016 Aug; 45(15):4042-73. PubMed ID: 27196691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy.
    Abellan P; Mehdi BL; Parent LR; Gu M; Park C; Xu W; Zhang Y; Arslan I; Zhang JG; Wang CM; Evans JE; Browning ND
    Nano Lett; 2014 Mar; 14(3):1293-9. PubMed ID: 24559146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryogenic Electron Microscopy for Energy Materials.
    Zhang Z; Cui Y; Vila R; Li Y; Zhang W; Zhou W; Chiu W; Cui Y
    Acc Chem Res; 2021 Sep; 54(18):3505-3517. PubMed ID: 34278783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges and Applications to
    Tyukalova E; Vimal Vas J; Ignatans R; Mueller AD; Medwal R; Imamura M; Asada H; Fukuma Y; Rawat RS; Tileli V; Duchamp M
    Acc Chem Res; 2021 Aug; ():. PubMed ID: 34339603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Electrochemical Liquid-Phase Transmission Electron Microscopy for Visualizing Rechargeable Battery Reactions.
    Hu H; Yang R; Zeng Z
    ACS Nano; 2024 May; 18(20):12598-12609. PubMed ID: 38723158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography.
    Yamamoto K; Iriyama Y; Hirayama T
    Microscopy (Oxf); 2017 Feb; 66(1):50-61. PubMed ID: 27733434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directly Probing the Local Coordination, Charge State, and Stability of Single Atom Catalysts by Advanced Electron Microscopy: A Review.
    Tieu P; Yan X; Xu M; Christopher P; Pan X
    Small; 2021 Apr; 17(16):e2006482. PubMed ID: 33624398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved transmission electron microscopy for nanoscale chemical dynamics.
    Alcorn FM; Jain PK; van der Veen RM
    Nat Rev Chem; 2023 Apr; 7(4):256-272. PubMed ID: 37117417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing Energy Materials by Cryogenic Electron Microscopy.
    Ren XC; Zhang XQ; Xu R; Huang JQ; Zhang Q
    Adv Mater; 2020 Jun; 32(24):e1908293. PubMed ID: 32249530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Langmuir-Blodgett Nanowire Devices for In Situ Probing of Zinc-Ion Batteries.
    Liu Q; Hao Z; Liao X; Pan X; Li S; Xu L; Mai L
    Small; 2019 Jul; 15(30):e1902141. PubMed ID: 31169975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ TEM studies on hydrogen-related issues: hydrogen storage, hydrogen embrittlement, fuel cells and electrolysis.
    Matsuda J
    Microscopy (Oxf); 2024 Apr; 73(2):196-207. PubMed ID: 38102762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid cell transmission electron microscopy and its applications.
    Pu S; Gong C; Robertson AW
    R Soc Open Sci; 2020 Jan; 7(1):191204. PubMed ID: 32218950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.