These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31184133)

  • 21. Structural evolutions in polymer-derived carbon-rich amorphous silicon carbide.
    Wang K; Ma B; Li X; Wang Y; An L
    J Phys Chem A; 2015 Jan; 119(4):552-8. PubMed ID: 25490064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of silicon nanowire diameter for alkyl (chain lengths C₁-C₁₈) passivation efficiency through Si-C bonds.
    Bashouti MY; Garzuzi CA; de la Mata M; Arbiol J; Ristein J; Haick H; Christiansen S
    Langmuir; 2015 Mar; 31(8):2430-7. PubMed ID: 25668493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of Straight Silicon Nanowires and Their Conductive Properties.
    Wu S; Shao YM; Nie TX; Xu L; Jiang ZM; Yang XJ
    Nanoscale Res Lett; 2015 Dec; 10(1):1025. PubMed ID: 26269253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tunable Anelasticity in Amorphous Si Nanowires.
    Wang Y; Liang B; Xu S; Tian L; Minor AM; Shan Z
    Nano Lett; 2020 Jan; 20(1):449-455. PubMed ID: 31804092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Situ Nano-thermomechanical Experiment Reveals Brittle to Ductile Transition in Silicon Nanowires.
    Cheng G; Zhang Y; Chang TH; Liu Q; Chen L; Lu WD; Zhu T; Zhu Y
    Nano Lett; 2019 Aug; 19(8):5327-5334. PubMed ID: 31314538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing field emission performance of aligned Si nanowires via in situ partial oxidization.
    Qian Z; Liu X; Yang Y; Yin Q
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6209-12. PubMed ID: 25936088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unidirectional endotaxial cobalt di-silicide nanowires on Si(110) substrates.
    Mahato JC; Das D; Banu N; Satpati B; Dev BN
    Nanotechnology; 2017 Oct; 28(42):425603. PubMed ID: 28718455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strong structural occupation ratio effect on mechanical properties of silicon carbide nanowires.
    Zhang X; Wang J; Yang Z; Tang X; Yue Y
    Sci Rep; 2020 Jul; 10(1):11386. PubMed ID: 32647170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low voltage nanoelectromechanical switches based on silicon carbide nanowires.
    Feng XL; Matheny MH; Zorman CA; Mehregany M; Roukes ML
    Nano Lett; 2010 Aug; 10(8):2891-6. PubMed ID: 20698601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deformation induced new pathways in silicon.
    Zhang Z; Cui J; Chang K; Liu D; Chen G; Jiang N; Guo D
    Nanoscale; 2019 May; 11(20):9862-9868. PubMed ID: 30916053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-temperature, self-catalyzed growth of Si nanowires.
    Cuscunà M; Convertino A; Mariucci L; Fortunato G; Felisari L; Nicotra G; Spinella C; Pecora A; Martelli F
    Nanotechnology; 2010 Jun; 21(25):255601. PubMed ID: 20508312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires.
    Shen D; Zhan Z; Liu Z; Cao Y; Zhou L; Liu Y; Dai W; Nishimura K; Li C; Lin CT; Jiang N; Yu J
    Sci Rep; 2017 Jun; 7(1):2606. PubMed ID: 28572604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine-Learning-Based Atomistic Model Analysis on High-Temperature Compressive Creep Properties of Amorphous Silicon Carbide.
    Kubo A; Umeno Y
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33805878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts.
    Habicht S; Zhao QT; Feste SF; Knoll L; Trellenkamp S; Ghyselen B; Mantl S
    Nanotechnology; 2010 Mar; 21(10):105701. PubMed ID: 20154367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures.
    Shen C; Ge M; Luo L; Fang X; Liu Y; Zhang A; Rong J; Wang C; Zhou C
    Sci Rep; 2016 Aug; 6():31334. PubMed ID: 27571919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively.
    Yang T; Zhang L; Hou X; Chen J; Chou KC
    Sci Rep; 2016 Apr; 6():24872. PubMed ID: 27109361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase transition and compressibility in silicon nanowires.
    Wang Y; Zhang J; Wu J; Coffer JL; Lin Z; Sinogeikin SV; Yang W; Zhao Y
    Nano Lett; 2008 Sep; 8(9):2891-5. PubMed ID: 18720974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Size-dependent fracture of silicon nanoparticles during lithiation.
    Liu XH; Zhong L; Huang S; Mao SX; Zhu T; Huang JY
    ACS Nano; 2012 Feb; 6(2):1522-31. PubMed ID: 22217200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unidirectional Pt silicide nanowires grown on vicinal Si(100).
    Lim DK; Bae SS; Choi J; Lee D; Sung da E; Kim S; Kim JK; Yeom HW; Lee H
    J Chem Phys; 2008 Mar; 128(9):094701. PubMed ID: 18331104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Incorporation of Pt Nanoparticles on the Surface of TeO₂-Branched Porous Si Nanowire Structures for Enhanced Room-Temperature Gas Sensing.
    Choi MS; Mirzaei A; Bang JH; Na HG; Jin C; Kim SS; Kim HW
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6647-6655. PubMed ID: 31027005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.