These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31184360)

  • 1. Development of an image biosensor based on an optogenetically engineered cell for visual prostheses.
    Li G; Wang F; Yang W; Yang J; Wang Y; Wang W; Liu L
    Nanoscale; 2019 Jul; 11(28):13213-13218. PubMed ID: 31184360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging with Optogenetically Engineered Living Cells as a Photodetector.
    Li G; Wang F; Yang W; Wang W; Li G; Wang Y; Liu L
    Adv Biosyst; 2019 Aug; 3(8):e1800319. PubMed ID: 32648700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bio-syncretic phototransistor based on optogenetically engineered living cells.
    Yang J; Li G; Wang W; Shi J; Li M; Xi N; Zhang M; Liu L
    Biosens Bioelectron; 2021 Apr; 178():113050. PubMed ID: 33548650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for expanding the operational range of channelrhodopsin in optogenetic vision.
    Mutter M; Münch TA
    PLoS One; 2013; 8(11):e81278. PubMed ID: 24312285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration.
    Weitz AC; Nanduri D; Behrend MR; Gonzalez-Calle A; Greenberg RJ; Humayun MS; Chow RH; Weiland JD
    Sci Transl Med; 2015 Dec; 7(318):318ra203. PubMed ID: 26676610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image Processing Strategies Based on a Visual Saliency Model for Object Recognition Under Simulated Prosthetic Vision.
    Wang J; Li H; Fu W; Chen Y; Li L; Lyu Q; Han T; Chai X
    Artif Organs; 2016 Jan; 40(1):94-100. PubMed ID: 25981202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip optical stimulation and electrical recording from cells.
    Yakushenko A; Gong Z; Maybeck V; Hofmann B; Gu E; Dawson M; Offenhäusser A; Wolfrum B
    J Biomed Opt; 2013 Nov; 18(11):111402. PubMed ID: 23788259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holographic optogenetic stimulation of patterned neuronal activity for vision restoration.
    Reutsky-Gefen I; Golan L; Farah N; Schejter A; Tsur L; Brosh I; Shoham S
    Nat Commun; 2013; 4():1509. PubMed ID: 23443537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical Stimulation of the Retina to Produce Artificial Vision.
    Weiland JD; Walston ST; Humayun MS
    Annu Rev Vis Sci; 2016 Oct; 2():273-294. PubMed ID: 28532361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical visual prostheses: from microstimulation to functional percept.
    Najarpour Foroushani A; Pack CC; Sawan M
    J Neural Eng; 2018 Apr; 15(2):021005. PubMed ID: 29350199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental implantation and long-term testing of an intraocular vision aid in rabbits.
    Szurman P; Warga M; Roters S; Grisanti S; Heimann U; Aisenbrey S; Rohrbach JM; Sellhaus B; Ziemssen F; Bartz-Schmidt KU
    Arch Ophthalmol; 2005 Jul; 123(7):964-9. PubMed ID: 16009839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upconversion optogenetics-driven biohybrid sensor for infrared sensing and imaging.
    Yang J; Zu L; Li G; Zhang C; Ge Z; Wang W; Wang X; Liu B; Xi N; Liu L
    Acta Biomater; 2023 Mar; 158():747-758. PubMed ID: 36638940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrode Dropout Compensation in Visual Prostheses: An Optimal Object Placement Approach.
    Elnabawy RH; Abdennadher S; Hellwich O; Eldawlatly S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6515-6518. PubMed ID: 34892602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities.
    Li G; Yang J; Wang Y; Wang W; Liu L
    Nanoscale; 2018 Dec; 10(45):21046-21051. PubMed ID: 30276394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit.
    Schwahn HN; Gekeler F; Kohler K; Kobuch K; Sachs HG; Schulmeyer F; Jakob W; Gabel VP; Zrenner E
    Graefes Arch Clin Exp Ophthalmol; 2001 Dec; 239(12):961-7. PubMed ID: 11820703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Optogenetics and prosthetic treatment of retinal degeneration].
    Kirpichnikov MP; Ostrovskiy MA
    Vestn Oftalmol; 2015; 131(3):99-111. PubMed ID: 26310015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimized content-aware image retargeting method: toward expanding the perceived visual field of the high-density retinal prosthesis recipients.
    Li H; Zeng Y; Lu Z; Cao X; Su X; Sui X; Wang J; Chai X
    J Neural Eng; 2018 Apr; 15(2):026025. PubMed ID: 29076459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A head mounted device stimulator for optogenetic retinal prosthesis.
    Soltan A; Barrett JM; Maaskant P; Armstrong N; Al-Atabany W; Chaudet L; Neil M; Sernagor E; Degenaar P
    J Neural Eng; 2018 Dec; 15(6):065002. PubMed ID: 30156188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MEMS-based system and image processing strategy for epiretinal prosthesis.
    Xia P; Hu J; Qi J; Gu C; Peng Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1257-63. PubMed ID: 26405885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetics, visual prosthesis and electrostimulation for retinal dystrophies.
    Garg SJ; Federman J
    Curr Opin Ophthalmol; 2013 Sep; 24(5):407-14. PubMed ID: 23799487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.