These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31184360)

  • 21. The Argus(®) II Retinal Prosthesis System.
    Luo YH; da Cruz L
    Prog Retin Eye Res; 2016 Jan; 50():89-107. PubMed ID: 26404104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards high-resolution retinal prostheses with direct optical addressing and inductive telemetry.
    Ha S; Khraiche ML; Akinin A; Jing Y; Damle S; Kuang Y; Bauchner S; Lo YH; Freeman WR; Silva GA; Cauwenberghs G
    J Neural Eng; 2016 Oct; 13(5):056008. PubMed ID: 27529371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visual prostheses: the enabling technology to give sight to the blind.
    Maghami MH; Sodagar AM; Lashay A; Riazi-Esfahani H; Riazi-Esfahani M
    J Ophthalmic Vis Res; 2014; 9(4):494-505. PubMed ID: 25709777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High Density, High Radiance $\mu$ LED Matrix for Optogenetic Retinal Prostheses and Planar Neural Stimulation.
    Soltan A; McGovern B; Drakakis E; Neil M; Maaskant P; Akhter M; Lee JS; Degenaar P
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):347-359. PubMed ID: 28212099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal Neuromodulation of Retinal Ganglion Cells by Low-Frequency Focused Ultrasound Stimulation.
    Jiang Q; Li G; Zhao H; Sheng W; Yue L; Su M; Weng S; Chan LL; Zhou Q; Humayun MS; Qiu W; Zheng H
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):969-976. PubMed ID: 29752231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances in implantable bionic devices for blindness: a review.
    Lewis PM; Ayton LN; Guymer RH; Lowery AJ; Blamey PJ; Allen PJ; Luu CD; Rosenfeld JV
    ANZ J Surg; 2016 Sep; 86(9):654-9. PubMed ID: 27301783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical stimulation of rat retinal neurons: feasibility of an epiretinal neurotransmitter-based prosthesis.
    Inayat S; Rountree CM; Troy JB; Saggere L
    J Neural Eng; 2015 Feb; 12(1):016010. PubMed ID: 25504758
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision.
    Li H; Su X; Wang J; Kan H; Han T; Zeng Y; Chai X
    Artif Intell Med; 2018 Jan; 84():64-78. PubMed ID: 29129481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arrays of microscopic organic LEDs for high-resolution optogenetics.
    Steude A; Witts EC; Miles GB; Gather MC
    Sci Adv; 2016 May; 2(5):e1600061. PubMed ID: 27386540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maintaining ocular safety with light exposure, focusing on devices for optogenetic stimulation.
    Yan B; Vakulenko M; Min SH; Hauswirth WW; Nirenberg S
    Vision Res; 2016 Apr; 121():57-71. PubMed ID: 26882975
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Moving object detection and background enhancement for thalamic visual prostheses.
    Abolfotuh HH; Jawwad A; Abdullah B; Mahdi HM; Eldawlatly S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4711-4714. PubMed ID: 28269323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a micromachined epiretinal vision prosthesis.
    Stieglitz T
    J Neural Eng; 2009 Dec; 6(6):065005. PubMed ID: 19850975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.
    Hight AE; Kozin ED; Darrow K; Lehmann A; Boyden E; Brown MC; Lee DJ
    Hear Res; 2015 Apr; 322():235-41. PubMed ID: 25598479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy.
    Hayashi Y; Tagawa Y; Yawata S; Nakanishi S; Funabiki K
    Eur J Neurosci; 2012 Sep; 36(6):2722-32. PubMed ID: 22780218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex.
    Schmidt EM; Bak MJ; Hambrecht FT; Kufta CV; O'Rourke DK; Vallabhanath P
    Brain; 1996 Apr; 119 ( Pt 2)():507-22. PubMed ID: 8800945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Image recognition with a limited number of pixels for visual prostheses design.
    Li S; Hu J; Chai X; Peng Y
    Artif Organs; 2012 Mar; 36(3):266-74. PubMed ID: 21954832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implantable optoelectronic probes for in vivo optogenetics.
    Iseri E; Kuzum D
    J Neural Eng; 2017 Jun; 14(3):031001. PubMed ID: 28198703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Research progress of visual prosthesis].
    Yan Y; Chai XY; Chen Y; Zhou CQ; Ren QS; Li LM
    Sheng Li Xue Bao; 2016 Oct; 68(5):628-636. PubMed ID: 27778027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A preliminary implementation of an active intraocular prosthesis as a new image acquisition device for a cortical visual prosthesis.
    Shim S; Seo K; Kim SJ
    J Artif Organs; 2020 Sep; 23(3):262-269. PubMed ID: 32342231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.