BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31184609)

  • 1. [Regulation of m^(6)A RNA Methylation and Its Effect on Myogenic Differentiation in Murine Myoblasts].
    Chen JN; Chen Y; Wei YY; Raza MA; Zou Q; Xi XY; Zhu L; Tang GQ; Jiang YZ; Li XW
    Mol Biol (Mosk); 2019; 53(3):436-445. PubMed ID: 31184609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. METTL3 promotes proliferation and myogenic differentiation through m
    Zhao T; Zhao R; Yi X; Cai R; Pang W
    Life Sci; 2022 Jun; 298():120496. PubMed ID: 35351467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The requirement of Mettl3-promoted
    Kudou K; Komatsu T; Nogami J; Maehara K; Harada A; Saeki H; Oki E; Maehara Y; Ohkawa Y
    Open Biol; 2017 Sep; 7(9):. PubMed ID: 28878038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. METTL3 regulates skeletal muscle specific miRNAs at both transcriptional and post-transcriptional levels.
    Diao LT; Xie SJ; Lei H; Qiu XS; Huang MC; Tao S; Hou YR; Hu YX; Sun YJ; Zhang Q; Xiao ZD
    Biochem Biophys Res Commun; 2021 May; 552():52-58. PubMed ID: 33740664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mRNA m⁶A methylation downregulates adipogenesis in porcine adipocytes.
    Wang X; Zhu L; Chen J; Wang Y
    Biochem Biophys Res Commun; 2015 Apr; 459(2):201-207. PubMed ID: 25725156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone H3 Methyltransferase Suv39h1 Prevents Myogenic Terminal Differentiation by Repressing MEF2 Activity in Muscle Cells.
    Jin W; Shang Y; Peng J; Jiang S
    Int J Mol Sci; 2016 Nov; 17(12):. PubMed ID: 27916793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive regulation of DNA demethylase gene TET1 and m
    Yang X; Mei C; Raza SHA; Ma X; Wang J; Du J; Zan L
    Int J Biol Macromol; 2022 Dec; 223(Pt A):916-930. PubMed ID: 36375665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ebp1 regulates myogenic differentiation of myoblast cells via SMAD2/3 signaling pathway.
    Yu M; Wang H; Liu Z; Lu Y; Yu D; Li D; Du W
    Dev Growth Differ; 2017 Aug; 59(6):540-551. PubMed ID: 28707296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: de novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation.
    Miyata K; Miyata T; Nakabayashi K; Okamura K; Naito M; Kawai T; Takada S; Kato K; Miyamoto S; Hata K; Asahara H
    Hum Mol Genet; 2015 Jan; 24(2):410-23. PubMed ID: 25190712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longitudinal epitranscriptome profiling reveals the crucial role of N
    Zhang X; Yao Y; Han J; Yang Y; Chen Y; Tang Z; Gao F
    J Genet Genomics; 2020 Aug; 47(8):466-476. PubMed ID: 33268291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. m
    Yang X; Mei C; Ma X; Du J; Wang J; Zan L
    Animals (Basel); 2022 Mar; 12(6):. PubMed ID: 35327170
    [No Abstract]   [Full Text] [Related]  

  • 12. Wnt10b deficiency promotes coexpression of myogenic and adipogenic programs in myoblasts.
    Vertino AM; Taylor-Jones JM; Longo KA; Bearden ED; Lane TF; McGehee RE; MacDougald OA; Peterson CA
    Mol Biol Cell; 2005 Apr; 16(4):2039-48. PubMed ID: 15673614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α.
    Ono Y; Sakamoto K
    PLoS One; 2017; 12(7):e0182040. PubMed ID: 28742154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Long Non-coding RNAs Modified by m
    Xie SJ; Tao S; Diao LT; Li PL; Chen WC; Zhou ZG; Hu YX; Hou YR; Lei H; Xu WY; Chen WJ; Peng YW; Zhang Q; Xiao ZD
    Front Cell Dev Biol; 2021; 9():762669. PubMed ID: 34722547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stage-specific requirement for METTL3-dependent m
    Luo H; Liu W; Zhou Y; Zhang Y; Wu J; Wang R; Shao L
    J Transl Med; 2022 Dec; 20(1):605. PubMed ID: 36527141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The RNA-binding protein Rbm24 is transiently expressed in myoblasts and is required for myogenic differentiation during vertebrate development.
    Grifone R; Xie X; Bourgeois A; Saquet A; Duprez D; Shi DL
    Mech Dev; 2014 Nov; 134():1-15. PubMed ID: 25217815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p38α MAPK disables KMT1A-mediated repression of myogenic differentiation program.
    Chatterjee B; Wolff DW; Jothi M; Mal M; Mal AK
    Skelet Muscle; 2016; 6():28. PubMed ID: 27551368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terminal differentiation program of skeletal myogenesis is negatively regulated by O-GlcNAc glycosylation.
    Ogawa M; Mizofuchi H; Kobayashi Y; Tsuzuki G; Yamamoto M; Wada S; Kamemura K
    Biochim Biophys Acta; 2012 Jan; 1820(1):24-32. PubMed ID: 22056510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of Small Molecules that Activate RNA Methylation through Cooperative Binding to the METTL3-14-WTAP Complex Active Site.
    Selberg S; Blokhina D; Aatonen M; Koivisto P; Siltanen A; Mervaala E; Kankuri E; Karelson M
    Cell Rep; 2019 Mar; 26(13):3762-3771.e5. PubMed ID: 30917327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stau1 regulates Dvl2 expression during myoblast differentiation.
    Yamaguchi Y; Naiki T; Irie K
    Biochem Biophys Res Commun; 2012 Jan; 417(1):427-32. PubMed ID: 22166206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.