These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 31184612)
1. [Impedance Spectroscopy and Transcriptome Analysis of Choriocarcinoma BeWo b30 as a Model of Human Placenta]. Nikulin SV; Knyazev EN; Gerasimenko TN; Shilin SA; Gazizov IN; Zakharova GS; Poloznikov AA; Sakharov DA Mol Biol (Mosk); 2019; 53(3):467-475. PubMed ID: 31184612 [TBL] [Abstract][Full Text] [Related]
2. Factors Involved in miRNA Processing Change Its Expression Level during Imitation of Hypoxia in BeWo b30 Cells. Nersisyan SA; Shkurnikov MY; Knyazev EN Dokl Biochem Biophys; 2020 Jul; 493(1):205-207. PubMed ID: 32894466 [TBL] [Abstract][Full Text] [Related]
3. Uptake and transport of pullulan acetate nanoparticles in the BeWo b30 placental barrier cell model. Tang H; Jiang Z; He H; Li X; Hu H; Zhang N; Dai Y; Zhou Z Int J Nanomedicine; 2018; 13():4073-4082. PubMed ID: 30034233 [TBL] [Abstract][Full Text] [Related]
4. Expression and functional activity of breast cancer resistance protein (BCRP, ABCG2) transporter in the human choriocarcinoma cell line BeWo. Ceckova M; Libra A; Pavek P; Nachtigal P; Brabec M; Fuchs R; Staud F Clin Exp Pharmacol Physiol; 2006; 33(1-2):58-65. PubMed ID: 16445700 [TBL] [Abstract][Full Text] [Related]
5. Assessment of an in vitro transport model using BeWo b30 cells to predict placental transfer of compounds. Li H; van Ravenzwaay B; Rietjens IM; Louisse J Arch Toxicol; 2013 Sep; 87(9):1661-9. PubMed ID: 23689295 [TBL] [Abstract][Full Text] [Related]
6. In vitro placental model optimization for nanoparticle transport studies. Cartwright L; Poulsen MS; Nielsen HM; Pojana G; Knudsen LE; Saunders M; Rytting E Int J Nanomedicine; 2012; 7():497-510. PubMed ID: 22334780 [TBL] [Abstract][Full Text] [Related]
7. Gene expression profile of a newly established choriocarcinoma cell line, iC3-1, compared to existing choriocarcinoma cell lines and normal placenta. Kobayashi Y; Banno K; Shimizu T; Ueki A; Tsuji K; Masuda K; Kisu I; Nomura H; Tominaga E; Nagano O; Saya H; Aoki D Placenta; 2013 Feb; 34(2):110-8. PubMed ID: 23199791 [TBL] [Abstract][Full Text] [Related]
8. Expression of membrane and nuclear progesterone receptors in two human placental choriocarcinoma cell lines (JEG-3 and BeWo): Effects of syncytialization. Zachariades E; Foster H; Goumenou A; Thomas P; Rand-Weaver M; Karteris E Int J Mol Med; 2011 Jun; 27(6):767-74. PubMed ID: 21455559 [TBL] [Abstract][Full Text] [Related]
9. Efflux transporter mRNA expression profiles in differentiating JEG-3 human choriocarcinoma cells as a placental transport model. Ikeda K; Yamasaki K; Homemoto M; Yamaue S; Ogawa M; Nakao E; Fukunaga Y; Nakanishi T; Utoguchi N; Myotoku M; Hirotani Y Pharmazie; 2012 Jan; 67(1):86-90. PubMed ID: 22393837 [TBL] [Abstract][Full Text] [Related]
10. Expression and activity of vitamin D receptor in the human placenta and in choriocarcinoma BeWo and JEG-3 cell lines. Pospechova K; Rozehnal V; Stejskalova L; Vrzal R; Pospisilova N; Jamborova G; May K; Siegmund W; Dvorak Z; Nachtigal P; Semecky V; Pavek P Mol Cell Endocrinol; 2009 Feb; 299(2):178-87. PubMed ID: 19133314 [TBL] [Abstract][Full Text] [Related]
11. IGF regulation of neutral amino acid transport in the BeWo choriocarcinoma cell line (b30 clone): evidence for MAP kinase-dependent and MAP kinase-independent mechanisms. Fang J; Mao D; Smith CH; Fant ME Growth Horm IGF Res; 2006; 16(5-6):318-25. PubMed ID: 17035059 [TBL] [Abstract][Full Text] [Related]
12. TMED2/p24β1 is expressed in all gestational stages of human placentas and in choriocarcinoma cell lines. Zakariyah A; Hou W; Slim R; Jerome-Majewska L Placenta; 2012 Mar; 33(3):214-9. PubMed ID: 22212250 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and secretion of human chorionic gonadotropin and its subunits in choriocarcinoma cells: a comparative study with normal placental cells. Takeuchi Y; Sakakibara R; Ishiguro M Mol Cell Endocrinol; 1990 Mar; 69(2-3):145-56. PubMed ID: 1691720 [TBL] [Abstract][Full Text] [Related]
14. Uptake mechanism of valproic acid in human placental choriocarcinoma cell line (BeWo). Ushigome F; Takanaga H; Matsuo H; Tsukimori K; Nakano H; Ohtani H; Sawada Y Eur J Pharmacol; 2001 Apr; 417(3):169-76. PubMed ID: 11334847 [TBL] [Abstract][Full Text] [Related]
15. Expression of mTOR and downstream signalling components in the JEG-3 and BeWo human placental choriocarcinoma cell lines. Mparmpakas D; Zachariades E; Foster H; Kara A; Harvey A; Goumenou A; Karteris E Int J Mol Med; 2010 Jan; 25(1):65-9. PubMed ID: 19956903 [TBL] [Abstract][Full Text] [Related]
16. Tissue-specific expression and thyroid hormone regulation of the endogenous placental growth hormone variant and chorionic somatomammotropin genes in a human choriocarcinoma cell line. Nickel BE; Cattini PA Endocrinology; 1991 May; 128(5):2353-9. PubMed ID: 1708334 [TBL] [Abstract][Full Text] [Related]
17. Studying placental transfer of highly purified non-dioxin-like PCBs in two models of the placental barrier. Correia Carreira S; Cartwright L; Mathiesen L; Knudsen LE; Saunders M Placenta; 2011 Mar; 32(3):283-91. PubMed ID: 21236486 [TBL] [Abstract][Full Text] [Related]
18. Functional characterization of L-alanine transport in a placental choriocarcinoma cell line (BeWo). Moe AJ; Furesz TC; Smith CH Placenta; 1994 Dec; 15(8):797-802. PubMed ID: 7886021 [TBL] [Abstract][Full Text] [Related]
19. Induction of cells differentiation and ABC transporters expression by a myco-estrogen, zearalenone, in human choriocarcinoma cell line (BeWo). Prouillac C; Videmann B; Mazallon M; Lecoeur S Toxicology; 2009 Sep; 263(2-3):100-7. PubMed ID: 19580841 [TBL] [Abstract][Full Text] [Related]
20. Over-expression of stomatin causes syncytium formation in nonfusogenic JEG-3 choriocarcinoma placental cells. Chen TW; Liu HW; Liou YJ; Lee JH; Lin CH Cell Biol Int; 2016 Aug; 40(8):926-33. PubMed ID: 27306251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]