These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 31184806)
1. Trilayer scaffold with cardiosphere-derived cells for heart valve tissue engineering. Chen Q; Bruyneel A; Carr C; Czernuszka J J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):729-737. PubMed ID: 31184806 [TBL] [Abstract][Full Text] [Related]
2. Jana S; Lerman A Regen Med; 2020 Jan; 15(1):1177-1192. PubMed ID: 32100626 [No Abstract] [Full Text] [Related]
3. Collagen type I and hyaluronic acid based hybrid scaffolds for heart valve tissue engineering. Nazir R; Bruyneel A; Carr C; Czernuszka J Biopolymers; 2019 Aug; 110(8):e23278. PubMed ID: 30958569 [TBL] [Abstract][Full Text] [Related]
4. Leaflet Tissue Generation from Microfibrous Heart Valve Leaflet Scaffolds with Native Characteristics. Jana S; Morse D; Lerman A ACS Appl Bio Mater; 2021 Nov; 4(11):7836-7847. PubMed ID: 35006765 [TBL] [Abstract][Full Text] [Related]
5. Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering. Jana S; Bhagia A; Lerman A Biomed Mater; 2019 Oct; 14(6):065014. PubMed ID: 31593551 [TBL] [Abstract][Full Text] [Related]
6. Melt-electrowriting-enabled anisotropic scaffolds loaded with valve interstitial cells for heart valve tissue Engineering. Xu C; Yang K; Xu Y; Meng X; Zhou Y; Xu Y; Li X; Qiao W; Shi J; Zhang D; Wang J; Xu W; Yang H; Luo Z; Dong N J Nanobiotechnology; 2024 Jun; 22(1):378. PubMed ID: 38943185 [TBL] [Abstract][Full Text] [Related]
7. Stabilized Collagen and Elastin-Based Scaffolds for Mitral Valve Tissue Engineering. Deborde C; Simionescu DT; Wright C; Liao J; Sierad LN; Simionescu A Tissue Eng Part A; 2016 Nov; 22(21-22):1241-1251. PubMed ID: 27608885 [TBL] [Abstract][Full Text] [Related]
8. Trilayered tissue structure with leaflet-like orientations developed through in vivo tissue engineering. Jana S; Franchi F; Lerman A Biomed Mater; 2019 Dec; 15(1):015004. PubMed ID: 31814596 [TBL] [Abstract][Full Text] [Related]
12. Heart valve tissue-derived hydrogels: Preparation and characterization of mitral valve chordae, aortic valve, and mitral valve gels. Wu J; Brazile B; McMahan SR; Liao J; Hong Y J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1732-1740. PubMed ID: 30419146 [TBL] [Abstract][Full Text] [Related]
13. A human pericardium biopolymeric scaffold for autologous heart valve tissue engineering: cellular and extracellular matrix structure and biomechanical properties in comparison with a normal aortic heart valve. Straka F; Schornik D; Masin J; Filova E; Mirejovsky T; Burdikova Z; Svindrych Z; Chlup H; Horny L; Daniel M; Machac J; Skibová J; Pirk J; Bacakova L J Biomater Sci Polym Ed; 2018 Apr; 29(6):599-634. PubMed ID: 29338582 [TBL] [Abstract][Full Text] [Related]
14. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering. Jahnavi S; Saravanan U; Arthi N; Bhuvaneshwar GS; Kumary TV; Rajan S; Verma RS Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():59-71. PubMed ID: 28183649 [TBL] [Abstract][Full Text] [Related]
15. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. Grover CN; Cameron RE; Best SM J Mech Behav Biomed Mater; 2012 Jun; 10():62-74. PubMed ID: 22520419 [TBL] [Abstract][Full Text] [Related]
16. The potential of anisotropic matrices as substrate for heart valve engineering. Sohier J; Carubelli I; Sarathchandra P; Latif N; Chester AH; Yacoub MH Biomaterials; 2014 Feb; 35(6):1833-44. PubMed ID: 24314554 [TBL] [Abstract][Full Text] [Related]
17. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling. Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783 [TBL] [Abstract][Full Text] [Related]