These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31184893)

  • 21. Structure-based design and synthesis of macrocyclic human rhinovirus 3C protease inhibitors.
    Namoto K; Sirockin F; Sellner H; Wiesmann C; Villard F; Moreau RJ; Valeur E; Paulding SC; Schleeger S; Schipp K; Loup J; Andrews L; Swale R; Robinson M; Farady CJ
    Bioorg Med Chem Lett; 2018 Mar; 28(5):906-909. PubMed ID: 29433930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and synthesis of irreversible depsipeptidyl human rhinovirus 3C protease inhibitors.
    Webber SE; Marakovits JT; Dragovich PS; Prins TJ; Zhou R; Fuhrman SA; Patick AK; Matthews DA; Lee CA; Srinivasan B; Moran T; Ford CE; Brothers MA; Harr JE; Meador JW; Ferre RA; Worland ST
    Bioorg Med Chem Lett; 2001 Oct; 11(20):2683-6. PubMed ID: 11591501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of anti-coxsackievirus agents targeting 3C protease.
    Kim BK; Kim JH; Kim NR; Lee WG; Lee SD; Yun SH; Jeon ES; Kim YC
    Bioorg Med Chem Lett; 2012 Nov; 22(22):6952-6. PubMed ID: 23062551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New 4-phenylcoumarin derivatives as potent 3C protease inhibitors: Design, synthesis, anti-HAV effect and molecular modeling.
    Kassem AF; Batran RZ; Abbas EMH; Elseginy SA; Shaheen MNF; Elmahdy EM
    Eur J Med Chem; 2019 Apr; 168():447-460. PubMed ID: 30844608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 3. Structure-activity studies of ketomethylene-containing peptidomimetics.
    Dragovich PS; Prins TJ; Zhou R; Fuhrman SA; Patick AK; Matthews DA; Ford CE; Meador JW; Ferre RA; Worland ST
    J Med Chem; 1999 Apr; 42(7):1203-12. PubMed ID: 10197964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted Covalent Inhibitors for Drug Design.
    Baillie TA
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13408-13421. PubMed ID: 27539547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-covalent inhibitors of rhinovirus 3C protease.
    Baxter A; Chambers M; Edfeldt F; Edman K; Freeman A; Johansson C; King S; Morley A; Petersen J; Rawlins P; Spadola L; Thong B; Van de Poël H; Williams N
    Bioorg Med Chem Lett; 2011 Jan; 21(2):777-80. PubMed ID: 21183345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Picornaviral 3C protease inhibitors and the dual 3C protease/coronaviral 3C-like protease inhibitors.
    Wang HM; Liang PH
    Expert Opin Ther Pat; 2010 Jan; 20(1):59-71. PubMed ID: 20021285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent progress in covalent warheads for in vivo targeting of endogenous proteins.
    Shindo N; Ojida A
    Bioorg Med Chem; 2021 Oct; 47():116386. PubMed ID: 34509863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 4-Iminooxazolidin-2-one as a Bioisostere of the Cyanohydrin Moiety: Inhibitors of Enterovirus 71 3C Protease.
    Ma Y; Shang C; Yang P; Li L; Zhai Y; Yin Z; Wang B; Shang L
    J Med Chem; 2018 Nov; 61(22):10333-10339. PubMed ID: 30365311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 4. Incorporation of P1 lactam moieties as L-glutamine replacements.
    Dragovich PS; Prins TJ; Zhou R; Webber SE; Marakovits JT; Fuhrman SA; Patick AK; Matthews DA; Lee CA; Ford CE; Burke BJ; Rejto PA; Hendrickson TF; Tuntland T; Brown EL; Meador JW; Ferre RA; Harr JE; Kosa MB; Worland ST
    J Med Chem; 1999 Apr; 42(7):1213-24. PubMed ID: 10197965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 6. Structure-activity studies of orally bioavailable, 2-pyridone-containing peptidomimetics.
    Dragovich PS; Prins TJ; Zhou R; Brown EL; Maldonado FC; Fuhrman SA; Zalman LS; Tuntland T; Lee CA; Patick AK; Matthews DA; Hendrickson TF; Kosa MB; Liu B; Batugo MR; Gleeson JP; Sakata SK; Chen L; Guzman MC; Meador JW; Ferre RA; Worland ST
    J Med Chem; 2002 Apr; 45(8):1607-23. PubMed ID: 11931615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of quinone analogues as potential inhibitors of picornavirus 3C protease in vitro.
    Jung E; Lee JY; Kim HJ; Ryu CK; Lee KI; Kim M; Lee CK; Go YY
    Bioorg Med Chem Lett; 2018 Aug; 28(14):2533-2538. PubMed ID: 29866517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and evaluation of keto-glutamine analogues as potent inhibitors of severe acute respiratory syndrome 3CLpro.
    Jain RP; Pettersson HI; Zhang J; Aull KD; Fortin PD; Huitema C; Eltis LD; Parrish JC; James MN; Wishart DS; Vederas JC
    J Med Chem; 2004 Dec; 47(25):6113-6. PubMed ID: 15566280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of the HRV-C 3C-Rupintrivir Complex Provides New Insights for Inhibitor Design.
    Yuan S; Fan K; Chen Z; Sun Y; Hou H; Zhu L
    Virol Sin; 2020 Aug; 35(4):445-454. PubMed ID: 32103448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical characterization of recombinant Enterovirus 71 3C protease with fluorogenic model peptide substrates and development of a biochemical assay.
    Shang L; Zhang S; Yang X; Sun J; Li L; Cui Z; He Q; Guo Y; Sun Y; Yin Z
    Antimicrob Agents Chemother; 2015 Apr; 59(4):1827-36. PubMed ID: 25421478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substituted benzamide inhibitors of human rhinovirus 3C protease: structure-based design, synthesis, and biological evaluation.
    Reich SH; Johnson T; Wallace MB; Kephart SE; Fuhrman SA; Worland ST; Matthews DA; Hendrickson TF; Chan F; Meador J; Ferre RA; Brown EL; DeLisle DM; Patick AK; Binford SL; Ford CE
    J Med Chem; 2000 May; 43(9):1670-83. PubMed ID: 10794684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autoprocessing: an essential step for expression and purification of enterovirus 71 3C(pro) in Escherichia coli.
    Huang S; Lyu Y; Qing X; Wang W; Tang L; Cheng K; Wang W
    Biotechnol Lett; 2013 Nov; 35(11):1845-52. PubMed ID: 23881322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a luciferase-based biosensor to assess enterovirus 71 3C protease activity in living cells.
    Zhang Y; Ke X; Zheng C; Liu Y; Xie L; Zheng Z; Wang H
    Sci Rep; 2017 Sep; 7(1):10385. PubMed ID: 28871120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of the Enterovirus 71 3C Protease in Complex with NK-1.8k and Indications for the Development of Antienterovirus Protease Inhibitor.
    Wang Y; Cao L; Zhai Y; Yin Z; Sun Y; Shang L
    Antimicrob Agents Chemother; 2017 Jul; 61(7):. PubMed ID: 28461310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.