These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31184901)

  • 1. Hydrodynamic Characterization of Phase Separation in Devices with Microfabricated Capillaries.
    Radhakrishnan ANP; Pradas M; Sorensen E; Kalliadasis S; Gavriilidis A
    Langmuir; 2019 Jun; 35(25):8199-8209. PubMed ID: 31184901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows.
    Yue J; Rebrov EV; Schouten JC
    Lab Chip; 2014 May; 14(9):1632-49. PubMed ID: 24651271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water slug formation and motion in gas flow channels: the effects of geometry, surface wettability, and gravity.
    Cheah MJ; Kevrekidis IG; Benziger JB
    Langmuir; 2013 Aug; 29(31):9918-34. PubMed ID: 23876035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stripping of acetone from water with microfabricated and membrane gas-liquid contactors.
    Constantinou A; Ghiotto F; Lam KF; Gavriilidis A
    Analyst; 2014 Jan; 139(1):266-72. PubMed ID: 24223420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure drop of slug flow in microchannels with increasing void fraction: experiment and modeling.
    Molla S; Eskin D; Mostowfi F
    Lab Chip; 2011 Jun; 11(11):1968-78. PubMed ID: 21512682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative study for control of air-liquid segmented flow in a 3D-printed chip using a vacuum-driven system.
    Hong H; Song JM; Yeom E
    Sci Rep; 2022 May; 12(1):8986. PubMed ID: 35643726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wetting: Inverse Dynamic Problem and Equations for Microscopic Parameters.
    Voinov OV
    J Colloid Interface Sci; 2000 Jun; 226(1):5-15. PubMed ID: 11401339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-liquid phase separation: characterisation of a novel device capable of separating particle carrying multiphase flows.
    Castell OK; Allender CJ; Barrow DA
    Lab Chip; 2009 Feb; 9(3):388-96. PubMed ID: 19156287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-phase slug flow in microchips can provide beneficial reaction conditions for enzyme liquid-liquid reactions.
    Cech J; Přibyl M; Snita D
    Biomicrofluidics; 2013; 7(5):54103. PubMed ID: 24404066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Liquid-Solid Mass Transfer and Hydrodynamics in Micropacked Bed with Gas-Liquid Flow.
    Cao E; Radhakrishnan ANP; Hasanudin RB; Gavriilidis A
    Ind Eng Chem Res; 2021 Jul; 60(29):10489-10501. PubMed ID: 34349342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscale extraction and phase separation using a porous capillary.
    Phillips TW; Bannock JH; deMello JC
    Lab Chip; 2015 Jul; 15(14):2960-7. PubMed ID: 26054926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-curvature liquid meniscus in a nanochannel: evidence of interplay between intermolecular and surface forces.
    Kim P; Kim HY; Kim JK; Reiter G; Suh KY
    Lab Chip; 2009 Nov; 9(22):3255-60. PubMed ID: 19865733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water slug to drop and film transitions in gas-flow channels.
    Cheah MJ; Kevrekidis IG; Benziger JB
    Langmuir; 2013 Dec; 29(48):15122-36. PubMed ID: 24206393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The separation of immiscible liquid slugs within plastic microchannels using a metallic hydrophilic sidestream.
    Scheiff F; Mendorf M; Agar D; Reis N; Mackley M
    Lab Chip; 2011 Mar; 11(6):1022-9. PubMed ID: 21279200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discontinuous liquid rise in capillaries with varying cross-sections.
    Tsori Y
    Langmuir; 2006 Oct; 22(21):8860-3. PubMed ID: 17014128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous micropillar structures for retaining low surface tension liquids.
    Agonafer DD; Lee H; Vasquez PA; Won Y; Jung KW; Lingamneni S; Ma B; Shan L; Shuai S; Du Z; Maitra T; Palko JW; Goodson KE
    J Colloid Interface Sci; 2018 Mar; 514():316-327. PubMed ID: 29275250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas Hydrate Crystallization in Thin Glass Capillaries: Roles of Supercooling and Wettability.
    Touil A; Broseta D; Desmedt A
    Langmuir; 2019 Sep; 35(38):12569-12581. PubMed ID: 31419142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure balance at the liquid-liquid interface of micro countercurrent flows in microchips.
    Aota A; Hibara A; Kitamori T
    Anal Chem; 2007 May; 79(10):3919-24. PubMed ID: 17439241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rise of the main meniscus in rectangular capillaries: Experiments and modeling.
    Wu P; Zhang H; Nikolov A; Wasan D
    J Colloid Interface Sci; 2016 Jan; 461():195-202. PubMed ID: 26402778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.