These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 3118510)
1. Acute nephropathy induced by gold sodium thiomalate: alterations in renal heme metabolism and morphology. Eiseman JL; Ribas JL; Knight E; Alvares AP Toxicol Appl Pharmacol; 1987 Nov; 91(2):193-203. PubMed ID: 3118510 [TBL] [Abstract][Full Text] [Related]
2. Regulation of heme metabolism and monooxygeneses in liver and kidney: influence of therapeutically used gold compounds. Gondal JA; Eiseman JL; Alvares AP J Pharmacol Exp Ther; 1987 May; 241(2):540-6. PubMed ID: 3106619 [TBL] [Abstract][Full Text] [Related]
3. Species differences in the renal toxicity of the antiarthritic drug, gold sodium thiomalate. Cheriathundam E; Alvares AP J Biochem Toxicol; 1996; 11(4):175-81. PubMed ID: 9062847 [TBL] [Abstract][Full Text] [Related]
4. Effects of the chrysotherapeutic agents auranofin and gold sodium thiomalate on hepatic and renal drug metabolism and heme metabolism. Leonard TB; Graichen ME; Dahm LJ; Dent JG Biochem Pharmacol; 1986 Sep; 35(18):3057-63. PubMed ID: 3092830 [TBL] [Abstract][Full Text] [Related]
5. The role of heme metabolism during the induction of hepatic and renal cytochrome P-450 levels and drug-metabolizing enzymes in rats by a Prudhoe Bay crude oil. Khan S; Rahimtula AD Can J Physiol Pharmacol; 1987 Jan; 65(1):75-9. PubMed ID: 3567724 [TBL] [Abstract][Full Text] [Related]
6. Diabetes-induced metabolic alterations in heme synthesis and degradation and various heme-containing enzymes in female rats. Bitar M; Weiner M Diabetes; 1984 Jan; 33(1):37-44. PubMed ID: 6606590 [TBL] [Abstract][Full Text] [Related]
7. Differential effects of cyclosporin on hepatic and renal heme, cytochrome P-450 and drug metabolism. Possible role in nephrotoxicity of the drug. Mayer RD; Berman S; Cockett AT; Maines MD Biochem Pharmacol; 1989 Mar; 38(6):1001-7. PubMed ID: 2495007 [TBL] [Abstract][Full Text] [Related]
8. Comparative effects of chelating agents on distribution, excretion, and renal toxicity of gold sodium thiomalate in rats. Takahashi Y; Funakoshi T; Shimada H; Kojima S Toxicology; 1994 May; 90(1-2):39-51. PubMed ID: 8023341 [TBL] [Abstract][Full Text] [Related]
9. Effect of repeated administration of chelating agents on distribution, excretion, and renal toxicity of gold sodium thiomalate in rats. Takahashi Y; Funakoshi T; Shimada H; Kiyozumi M; Kojima S Res Commun Chem Pathol Pharmacol; 1992 May; 76(2):253-6. PubMed ID: 1604050 [TBL] [Abstract][Full Text] [Related]
10. Haem and drug-metabolizing enzymes in regenerating rat liver. Srivastava RC; Dwivedi RS; Kaur G; Srivastava R Br J Exp Pathol; 1982 Feb; 63(1):1-4. PubMed ID: 6895999 [TBL] [Abstract][Full Text] [Related]
11. The utility of chelating agents as antidotes for nephrotoxicity of gold sodium thiomalate in adjuvant-arthritic rats. Takahashi Y; Funakoshi T; Shimada H; Kojima S Toxicology; 1995 Mar; 97(1-3):151-7. PubMed ID: 7716781 [TBL] [Abstract][Full Text] [Related]
12. Alterations of heme, cytochrome P-450, and steroid metabolism by mercury in rat adrenal. Veltman JC; Maines MD Arch Biochem Biophys; 1986 Aug; 248(2):467-78. PubMed ID: 2943220 [TBL] [Abstract][Full Text] [Related]
13. Protective effects of chelating agents against renal toxicity of gold sodium thiomalate in rats. Kojima S; Takahashi Y; Kiyozumi M; Tagawa Y Arch Toxicol; 1991; 65(7):532-6. PubMed ID: 1664200 [TBL] [Abstract][Full Text] [Related]
14. Alterations in microsomal drug metabolism and heme oxygenase activity in isolated hepatic parenchymal and sinusoidal cells in Murphy-Sturm lymphosarcoma-bearing rats. Schacter BA; Kurz P Clin Invest Med; 1986; 9(3):150-5. PubMed ID: 3093126 [TBL] [Abstract][Full Text] [Related]
15. Regulation of heme metabolism in rat hepatocytes and hepatocyte cell lines: delta-aminolevulinic acid synthase and heme oxygenase are regulated by different heme-dependent mechanisms. Cable EE; Miller TG; Isom HC Arch Biochem Biophys; 2000 Dec; 384(2):280-95. PubMed ID: 11368315 [TBL] [Abstract][Full Text] [Related]
16. Benzene modulation of liver cell structure and heme-cytochrome P-450 metabolism. Abraham NG; Lutton JD; Freedman ML; Levere RD Am J Med Sci; 1986 Aug; 292(2):81-6. PubMed ID: 3755290 [TBL] [Abstract][Full Text] [Related]
17. Heme and hemoproteins in streptozotocin-diabetic female rats. Bitar M; Weiner M Biochem Pharmacol; 1983 Jun; 32(12):1921-8. PubMed ID: 6688350 [TBL] [Abstract][Full Text] [Related]
18. Characterization of heme oxygenase in the small intestinal epithelium. Rosenberg DW; Kappas A Arch Biochem Biophys; 1989 Nov; 274(2):471-80. PubMed ID: 2802622 [TBL] [Abstract][Full Text] [Related]
19. Evidence for the catabolism of polychlorinated biphenyl-induced cytochrome P-448 by microsomal heme oxygenase, and the inhibition of delta-aminolevulinate dehydratase by polychlorinated biphenyls. Maines MD J Exp Med; 1976 Dec; 144(6):1509-19. PubMed ID: 826600 [TBL] [Abstract][Full Text] [Related]
20. Effect of heme on allylisopropylacetamide-induced changes in heme and drug metabolism in the rhesus monkey (Macaca mulatta). Muller-Eberhard U; Eiseman JL; Foidart M; Alvares AP Biochem Pharmacol; 1983 Dec; 32(24):3765-9. PubMed ID: 6689267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]