These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31185160)

  • 1. Chemical Aging Changed Aggregation Kinetics and Transport of Biochar Colloids.
    Wang Y; Zhang W; Shang J; Shen C; Joseph SD
    Environ Sci Technol; 2019 Jul; 53(14):8136-8146. PubMed ID: 31185160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloidal stability and aggregation kinetics of biochar colloids: Effects of pyrolysis temperature, cation type, and humic acid concentrations.
    Yang W; Shang J; Sharma P; Li B; Liu K; Flury M
    Sci Total Environ; 2019 Mar; 658():1306-1315. PubMed ID: 30677992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of biochar colloids under unsaturated flow condition: Roles of chemical aging and cation type.
    Zhao K; Shang J
    Sci Total Environ; 2023 Feb; 859(Pt 2):160415. PubMed ID: 36427725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media.
    Haque ME; Shen C; Li T; Chu H; Wang H; Li Z; Huang Y
    J Environ Qual; 2017 Nov; 46(6):1480-1488. PubMed ID: 29293838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of biochar colloids in saturated porous media in the presence of humic substances or proteins.
    Yang W; Bradford SA; Wang Y; Sharma P; Shang J; Li B
    Environ Pollut; 2019 Mar; 246():855-863. PubMed ID: 30623842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cotransport of aged biochar colloids and thallium(I) in water-saturated porous media: Impact of the ionic strength, pH and aging degree.
    Yang S; Cao Y; Li Z; Ma C; Huang Y; Hu D; Liu H; Huangfu X
    Sci Total Environ; 2024 Jun; 927():172294. PubMed ID: 38593882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon stability and mobility of ball milled lignin- and cellulose-rich biochar colloids.
    Chen X; Wu W; Han L; Gu M; Li J; Chen M
    Sci Total Environ; 2022 Jan; 802():149759. PubMed ID: 34464793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation kinetics of biochar nanoparticles in aqueous environment: Interplays of anion type and bovine serum albumin.
    Yang W; Li B; Shang J
    Sci Total Environ; 2022 Aug; 833():155148. PubMed ID: 35405228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release and sedimentation behaviors of biochar colloids in soil solutions.
    Meng Q; Jin L; Cheng L; Fang J; Lin D
    J Environ Sci (China); 2021 Feb; 100():269-278. PubMed ID: 33279039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon content determines the aggregation of biochar colloids from various feedstocks.
    Li Q; Zhang X; Mao M; Wang X; Shang J
    Sci Total Environ; 2023 Jul; 880():163313. PubMed ID: 37030377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cotransport and deposition of biochar with different sized-plastic particles in saturated porous media.
    Tong M; Li T; Li M; He L; Ma Z
    Sci Total Environ; 2020 Apr; 713():136387. PubMed ID: 31954247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil colloids affect the aggregation and stability of biochar colloids.
    Gui X; Song B; Chen M; Xu X; Ren Z; Li X; Cao X
    Sci Total Environ; 2021 Jun; 771():145414. PubMed ID: 33736183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions.
    Chen M; Wang D; Yang F; Xu X; Xu N; Cao X
    Environ Pollut; 2017 Nov; 230():540-549. PubMed ID: 28709053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media.
    Peng S; Wu D; Ge Z; Tong M; Kim H
    Environ Pollut; 2017 Jun; 225():141-149. PubMed ID: 28365511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfide reduction can significantly enhance transport of biochar fine particles in saturated porous medium.
    Ma P; Chen W
    Environ Pollut; 2020 Aug; 263(Pt B):114445. PubMed ID: 32251981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar.
    Fan Q; Sun J; Chu L; Cui L; Quan G; Yan J; Hussain Q; Iqbal M
    Chemosphere; 2018 Sep; 207():33-40. PubMed ID: 29772422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antagonistic effect of humic acid and naphthalene on biochar colloid transport in saturated porous media.
    Yang W; Wang Y; Shang J; Liu K; Sharma P; Liu J; Li B
    Chemosphere; 2017 Dec; 189():556-564. PubMed ID: 28963973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of natural organic matter on the aggregation dynamics of biochar colloids derived from various feedstocks.
    Li Q; Si H; Chen X; Mao M; Shang J
    Sci Total Environ; 2024 Oct; 946():174097. PubMed ID: 38908602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of sulfamethazine and ciprofloxacin on grain surface decreases the transport of biochar colloids in saturated porous media.
    Zhao K; Gao L; Zhang Q; Shang J
    J Hazard Mater; 2021 Sep; 417():125908. PubMed ID: 33984789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.