These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 31185263)
1. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Bahramnejad B; Naji M; Bose R; Jha S Biotechnol Adv; 2019 Nov; 37(7):107405. PubMed ID: 31185263 [TBL] [Abstract][Full Text] [Related]
2. Structure of T-DNA in roots transformed by Agrobacterium rhizogenes. Byrne MC; Koplow J; David C; Tempé J; Chilton MD J Mol Appl Genet; 1983; 2(2):201-9. PubMed ID: 6875427 [TBL] [Abstract][Full Text] [Related]
3. Expression vectors based on the Agrobacterium rhizogenes Ri plasmid transformation system. Robaglia C; Vilaine F; Pautot V; Raimond F; Amselem J; Jouanin L; Casse-Delbart F; Tepfer M Biochimie; 1987 Mar; 69(3):231-7. PubMed ID: 3111548 [TBL] [Abstract][Full Text] [Related]
4. Development of a transgenic hairy root system in jute (Corchorus capsularis L.) with gusA reporter gene through Agrobacterium rhizogenes mediated co-transformation. Chattopadhyay T; Roy S; Mitra A; Maiti MK Plant Cell Rep; 2011 Apr; 30(4):485-93. PubMed ID: 21153028 [TBL] [Abstract][Full Text] [Related]
5. Efficient transformation of potato (Solanum tuberosum L.) using a binary vector in Agrobacterium rhizogenes. Visser RG; Jacobsen E; Witholt B; Feenstra WJ Theor Appl Genet; 1989 Oct; 78(4):594-600. PubMed ID: 24225690 [TBL] [Abstract][Full Text] [Related]
6. Stable transformation and direct regeneration in Coffea canephora P ex. Fr. by Agrobacterium rhizogenes mediated transformation without hairy-root phenotype. Kumar V; Satyanarayana KV; Sarala Itty S; Indu EP; Giridhar P; Chandrashekar A; Ravishankar GA Plant Cell Rep; 2006 Mar; 25(3):214-22. PubMed ID: 16331458 [TBL] [Abstract][Full Text] [Related]
7. A disarmed binary vector from Agrobacterium tumefaciens functions in Agrobacterium rhizogenes : Frequent co-transformation of two distinct T-DNAs. Simpson RB; Spielmann A; Margossian L; McKnight TD Plant Mol Biol; 1986 Nov; 6(6):403-15. PubMed ID: 24307418 [TBL] [Abstract][Full Text] [Related]
8. A new vector derived from Agrobacterium rhizogenes plasmids: a micro-Ri plasmid and its use to construct a mini-Ri plasmid. Vilaine F; Casse-Delbart F Gene; 1987; 55(1):105-14. PubMed ID: 3623102 [TBL] [Abstract][Full Text] [Related]
9. A binary-BAC system for plant transformation with high-molecular-weight DNA. Hamilton CM Gene; 1997 Oct; 200(1-2):107-16. PubMed ID: 9373144 [TBL] [Abstract][Full Text] [Related]
10. Transgenic medicinal plants: Agrobacterium-mediated foreign gene transfer and production of secondary metabolites. Saito K; Yamazaki M; Murakoshi I J Nat Prod; 1992 Feb; 55(2):149-62. PubMed ID: 1624938 [TBL] [Abstract][Full Text] [Related]
11. Gene Downregulation in Potato Roots Using Agrobacterium rhizogenes-Mediated Transformation. Fernández-Piñán S; Sànchez-Guirado C; Figueras M; Serra O Methods Mol Biol; 2021; 2354():353-372. PubMed ID: 34448169 [TBL] [Abstract][Full Text] [Related]
12. Agrobacterium Rhizogenes-Mediated Gene Transfer Using PRI 1855 and a Binary Vector. Fakhrai HK Methods Mol Biol; 1990; 6():289-99. PubMed ID: 21390615 [TBL] [Abstract][Full Text] [Related]
13. Complementation of Agrobacterium tumefaciens tumor-inducing aux mutants by genes from the T(R)-region of the Ri plasmid of Agrobacterium rhizogenes. Offringa IA; Melchers LS; Regensburg-Tuink AJ; Costantino P; Schilperoort RA; Hooykaas PJ Proc Natl Acad Sci U S A; 1986 Sep; 83(18):6935-9. PubMed ID: 16593762 [TBL] [Abstract][Full Text] [Related]
14. A simple and efficient protocol for generating transgenic hairy roots using Agrobacterium rhizogenes. Ferguson S; Abel NB; Reid D; Madsen LH; Luu TB; Andersen KR; Stougaard J; Radutoiu S PLoS One; 2023; 18(11):e0291680. PubMed ID: 37910566 [TBL] [Abstract][Full Text] [Related]
15. Construction and use of Agrobacterium tumefaciens binary vectors with A. tumefaciens C58 T-DNA genes. Vlasák J; Ondrej M Folia Microbiol (Praha); 1992; 37(3):227-30. PubMed ID: 1505884 [TBL] [Abstract][Full Text] [Related]
16. Enhanced production of single copy backbone-free transgenic plants in multiple crop species using binary vectors with a pRi replication origin in Agrobacterium tumefaciens. Ye X; Williams EJ; Shen J; Johnson S; Lowe B; Radke S; Strickland S; Esser JA; Petersen MW; Gilbertson LA Transgenic Res; 2011 Aug; 20(4):773-86. PubMed ID: 21042934 [TBL] [Abstract][Full Text] [Related]
17. Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Tepfer D Cell; 1984 Jul; 37(3):959-67. PubMed ID: 6744417 [TBL] [Abstract][Full Text] [Related]
18. Altered carbon status in Okamoto S; Ueki Y Plant Signal Behav; 2022 Dec; 17(1):2097469. PubMed ID: 35819026 [TBL] [Abstract][Full Text] [Related]
19. RepB C-terminus mutation of a pRi-repABC binary vector affects plasmid copy number in Agrobacterium and transgene copy number in plants. Vaghchhipawala Z; Radke S; Nagy E; Russell ML; Johnson S; Gelvin SB; Gilbertson LA; Ye X PLoS One; 2018; 13(11):e0200972. PubMed ID: 30412579 [TBL] [Abstract][Full Text] [Related]
20. The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. Moriguchi K; Maeda Y; Satou M; Hardayani NS; Kataoka M; Tanaka N; Yoshida K J Mol Biol; 2001 Mar; 307(3):771-84. PubMed ID: 11273700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]