BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 31185446)

  • 1. Biofabrication of Lysinibacillus sphaericus-reduced graphene oxide in three-dimensional polyacrylamide/carbon nanocomposite hydrogels for skin tissue engineering.
    Narayanan KB; Choi SM; Han SS
    Colloids Surf B Biointerfaces; 2019 Sep; 181():539-548. PubMed ID: 31185446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa.
    Gurunathan S; Han JW; Dayem AA; Eppakayala V; Kim JH
    Int J Nanomedicine; 2012; 7():5901-14. PubMed ID: 23226696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene.
    Gurunathan S; Han JW; Park JH; Eppakayala V; Kim JH
    Int J Nanomedicine; 2014; 9():363-77. PubMed ID: 24453487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green chemistry approach for the synthesis of biocompatible graphene.
    Gurunathan S; Han JW; Kim JH
    Int J Nanomedicine; 2013; 8():2719-32. PubMed ID: 23940417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells.
    Gurunathan S; Han JW; Eppakayala V; Kim JH
    Colloids Surf B Biointerfaces; 2013 May; 105():58-66. PubMed ID: 23352948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation.
    Jo H; Sim M; Kim S; Yang S; Yoo Y; Park JH; Yoon TH; Kim MG; Lee JY
    Acta Biomater; 2017 Jan; 48():100-109. PubMed ID: 27989919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanically strong and pH-responsive carboxymethyl chitosan/graphene oxide/polyacrylamide nanocomposite hydrogels with fast recoverability.
    Chen Y; Wang H; Yu J; Wang Y; Zhu J; Hu Z
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1899-1917. PubMed ID: 28726563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green synthesis of graphene and its cytotoxic effects in human breast cancer cells.
    Gurunathan S; Han JW; Eppakayala V; Kim JH
    Int J Nanomedicine; 2013; 8():1015-27. PubMed ID: 23687445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and evaluation of bacterial nanocellulose/poly(acrylic acid)/graphene oxide composite hydrogel: Characterizations and biocompatibility studies for wound dressing.
    Chen XY; Low HR; Loi XY; Merel L; Mohd Cairul Iqbal MA
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):2140-2151. PubMed ID: 30758129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231).
    Gurunathan S; Han J; Park JH; Kim JH
    Int J Nanomedicine; 2014; 9():1783-97. PubMed ID: 24741313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties.
    Ramazani S; Karimi M
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():325-34. PubMed ID: 26249597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility and hemocompatibility of hydrothermally derived reduced graphene oxide using soluble starch as a reducing agent.
    Narayanan KB; Kim HD; Han SS
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110579. PubMed ID: 31689675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-biofilm activity and food packaging application of room temperature solution process based polyethylene glycol capped Ag-ZnO-graphene nanocomposite.
    Naskar A; Khan H; Sarkar R; Kumar S; Halder D; Jana S
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():743-753. PubMed ID: 30033309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy.
    Gurunathan S; Han JW; Park JH; Kim E; Choi YJ; Kwon DN; Kim JH
    Int J Nanomedicine; 2015; 10():6257-76. PubMed ID: 26491296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering.
    Xie X; Hu K; Fang D; Shang L; Tran SD; Cerruti M
    Nanoscale; 2015 May; 7(17):7992-8002. PubMed ID: 25864935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering.
    Shin SR; Zihlmann C; Akbari M; Assawes P; Cheung L; Zhang K; Manoharan V; Zhang YS; Yüksekkaya M; Wan KT; Nikkhah M; Dokmeci MR; Tang XS; Khademhosseini A
    Small; 2016 Jul; 12(27):3677-89. PubMed ID: 27254107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium carboxymethyl cellulose hydrogels containing reduced graphene oxide (rGO) as a functional antibiofilm wound dressing.
    Ali NH; Amin MCIM; Ng SF
    J Biomater Sci Polym Ed; 2019 Jun; 30(8):629-645. PubMed ID: 30896336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels.
    Si H; Luo H; Xiong G; Yang Z; Raman SR; Guo R; Wan Y
    Macromol Rapid Commun; 2014 Oct; 35(19):1706-11. PubMed ID: 25180660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatically cross-linked hyaluronic acid/graphene oxide nanocomposite hydrogel with pH-responsive release.
    Song F; Hu W; Xiao L; Cao Z; Li X; Zhang C; Liao L; Liu L
    J Biomater Sci Polym Ed; 2015; 26(6):339-52. PubMed ID: 25598448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-Infrared Light-Responsive Poly(N-isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels with Ultrahigh Tensibility.
    Shi K; Liu Z; Wei YY; Wang W; Ju XJ; Xie R; Chu LY
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27289-98. PubMed ID: 26580856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.