These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 31185638)
1. Design of UAV Downwash Airflow Field Detection System Based on Strain Effect Principle. Wu Y; Qi L; Zhang H; Musiu EM; Yang Z; Wang P Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31185638 [TBL] [Abstract][Full Text] [Related]
2. Droplet Deposition Distribution Prediction Method for a Six-Rotor Plant Protection UAV Based on Inverse Distance Weighting. Wang B; Zhang Y; Wang C; Teng G Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236524 [TBL] [Abstract][Full Text] [Related]
3. Numerical simulation and verification of rotor downwash flow field of plant protection UAV at different rotor speeds. Chang K; Chen S; Wang M; Xue X; Lan Y Front Plant Sci; 2022; 13():1087636. PubMed ID: 36777541 [TBL] [Abstract][Full Text] [Related]
4. Downwash characteristics and analysis from a six-rotor unmanned aerial vehicle configured for plant protection. Yang S; Xu P; Jiang S; Zheng Y Pest Manag Sci; 2022 Apr; 78(4):1707-1720. PubMed ID: 34994501 [TBL] [Abstract][Full Text] [Related]
5. UAV-Borne Dual-Band Sensor Method for Monitoring Physiological Crop Status. Yao L; Wang Q; Yang J; Zhang Y; Zhu Y; Cao W; Ni J Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781552 [TBL] [Abstract][Full Text] [Related]
6. Design of Variable Spray System for Plant Protection UAV Based on CFD Simulation and Regression Analysis. Ni M; Wang H; Liu X; Liao Y; Fu L; Wu Q; Mu J; Chen X; Li J Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477600 [TBL] [Abstract][Full Text] [Related]
7. Distribution characteristics on droplet deposition of wind field vortex formed by multi-rotor UAV. Guo S; Li J; Yao W; Zhan Y; Li Y; Shi Y PLoS One; 2019; 14(7):e0220024. PubMed ID: 31329644 [TBL] [Abstract][Full Text] [Related]
8. Post-movement stabilization time for the downwash region of a 6-rotor UAV for remote gas monitoring. Brinkman JL; Davis B; Johnson CE Heliyon; 2020 Sep; 6(9):e04994. PubMed ID: 33005799 [TBL] [Abstract][Full Text] [Related]
9. Back pressure generated by downwash and crosswind on spatial atomization characteristics during UAV spraying: CFD analysis and verification. Feng H; Xu P; Yang S; Zheng Y; Li W; Liu W; Zhao H; Jiang S Pest Manag Sci; 2024 Mar; 80(3):1348-1360. PubMed ID: 37915287 [TBL] [Abstract][Full Text] [Related]
11. CFD-based pesticide selection for a nozzle used in a six-rotor UAV in hover mode for tea spraying. Dong SJ; Gui QH; Zhu L; Zou XR; Zhou WX; Hou RY; Moray PJ; Yin CL Pest Manag Sci; 2023 May; 79(5):1963-1976. PubMed ID: 36680499 [TBL] [Abstract][Full Text] [Related]
12. WSN-Assisted UAV Trajectory Adjustment for Pesticide Drift Control. Hu J; Wang T; Yang J; Lan Y; Lv S; Zhang Y Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987849 [TBL] [Abstract][Full Text] [Related]
13. Development and Validation of a UAV Based System for Air Pollution Measurements. Villa TF; Salimi F; Morton K; Morawska L; Gonzalez F Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 28009820 [TBL] [Abstract][Full Text] [Related]
14. The Multi-Gas Sensor for Remote UAV and UGV Missions-Development and Tests. Kaliszewski M; Włodarski M; Młyńczak J; Jankiewicz B; Auer L; Bartosewicz B; Liszewska M; Budner B; Szala M; Schneider B; Povoden G; Kopczyński K Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833684 [TBL] [Abstract][Full Text] [Related]
15. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind. Luo H; Liang Z; Zhu M; Hu X; Wang G PLoS One; 2018; 13(3):e0194690. PubMed ID: 29561888 [TBL] [Abstract][Full Text] [Related]
16. Spray performance and control efficacy against pests in paddy rice by UAV-based pesticide application: effects of atomization, UAV configuration and flight velocity. Wongsuk S; Qi P; Wang C; Zeng A; Sun F; Yu F; Zhao X; Xiongkui H Pest Manag Sci; 2024 Apr; 80(4):2072-2084. PubMed ID: 38129096 [TBL] [Abstract][Full Text] [Related]
17. Swath pattern analysis from a multi-rotor unmanned aerial vehicle configured for pesticide application. Richardson B; Rolando CA; Somchit C; Dunker C; Strand TM; Kimberley MO Pest Manag Sci; 2020 Apr; 76(4):1282-1290. PubMed ID: 31595645 [TBL] [Abstract][Full Text] [Related]
18. Near-surface wind profile test based on accuracy verification of UAV anemometer lifting height in an urban fringe built-up area. Ding W; Chen H; Chang H; Wang Y; Zhou D; Feng W Environ Sci Pollut Res Int; 2022 Nov; 29(54):81468-81480. PubMed ID: 35731433 [TBL] [Abstract][Full Text] [Related]
19. Application of a centrifugal disc fertilizer spreading system for UAVs in rice fields. Zhou H; Yao W; Su D; Guo S; Zheng Z; Yu Z; Gao D; Li H; Chen C Heliyon; 2024 Apr; 10(8):e29837. PubMed ID: 38681536 [TBL] [Abstract][Full Text] [Related]
20. Are estimates of wind characteristics based on measurements with Pitot tubes and GNSS receivers mounted on consumer-grade unmanned aerial vehicles applicable in meteorological studies? Niedzielski T; Skjøth C; Werner M; Spallek W; Witek M; Sawiński T; Drzeniecka-Osiadacz A; Korzystka-Muskała M; Muskała P; Modzel P; Guzikowski J; Kryza M Environ Monit Assess; 2017 Sep; 189(9):431. PubMed ID: 28770432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]