These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 31186236)
1. Drugging OXPHOS Dependency in Cancer. Cancer Discov; 2019 Aug; 9(8):OF10. PubMed ID: 31186236 [TBL] [Abstract][Full Text] [Related]
2. Promising strategy developed to target drug-resistant cancer cells. Thorne J Future Med Chem; 2014 Apr; 6(6):603. PubMed ID: 25028759 [No Abstract] [Full Text] [Related]
3. Targeting Oxidative Phosphorylation Reverses Drug Resistance in Cancer Cells by Blocking Autophagy Recycling. Lee JS; Lee H; Jang H; Woo SM; Park JB; Lee SH; Kang JH; Kim HY; Song J; Kim SY Cells; 2020 Sep; 9(9):. PubMed ID: 32883024 [TBL] [Abstract][Full Text] [Related]
4. Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759. Pujalte-Martin M; Belaïd A; Bost S; Kahi M; Peraldi P; Rouleau M; Mazure NM; Bost F Mol Oncol; 2024 Jul; 18(7):1719-1738. PubMed ID: 38214418 [TBL] [Abstract][Full Text] [Related]
5. Oxidative phosphorylation as a target to arrest malignant neoplasias. Rodríguez-Enríquez S; Gallardo-Pérez JC; Marín-Hernández A; Aguilar-Ponce JL; Mandujano-Tinoco EA; Meneses A; Moreno-Sánchez R Curr Med Chem; 2011; 18(21):3156-67. PubMed ID: 21671858 [TBL] [Abstract][Full Text] [Related]
6. OXPHOS-targeting drugs in oncology: new perspectives. Kalyanaraman B; Cheng G; Hardy M; You M Expert Opin Ther Targets; 2023; 27(10):939-952. PubMed ID: 37736880 [TBL] [Abstract][Full Text] [Related]
7. Resistance Is Futile: Targeting Mitochondrial Energetics and Metabolism to Overcome Drug Resistance in Cancer Treatment. Bosc C; Selak MA; Sarry JE Cell Metab; 2017 Nov; 26(5):705-707. PubMed ID: 29117545 [TBL] [Abstract][Full Text] [Related]
8. Oxidative Phosphorylation as an Emerging Target in Cancer Therapy. Ashton TM; McKenna WG; Kunz-Schughart LA; Higgins GS Clin Cancer Res; 2018 Jun; 24(11):2482-2490. PubMed ID: 29420223 [TBL] [Abstract][Full Text] [Related]
9. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors. Zhang X; de Milito A; Olofsson MH; Gullbo J; D'Arcy P; Linder S Int J Mol Sci; 2015 Nov; 16(11):27313-26. PubMed ID: 26580606 [TBL] [Abstract][Full Text] [Related]
10. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment. Frattaruolo L; Brindisi M; Curcio R; Marra F; Dolce V; Cappello AR Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825551 [TBL] [Abstract][Full Text] [Related]
11. Restoration of mitochondria function as a target for cancer therapy. Bhat TA; Kumar S; Chaudhary AK; Yadav N; Chandra D Drug Discov Today; 2015 May; 20(5):635-43. PubMed ID: 25766095 [TBL] [Abstract][Full Text] [Related]
12. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Molina JR; Sun Y; Protopopova M; Gera S; Bandi M; Bristow C; McAfoos T; Morlacchi P; Ackroyd J; Agip AA; Al-Atrash G; Asara J; Bardenhagen J; Carrillo CC; Carroll C; Chang E; Ciurea S; Cross JB; Czako B; Deem A; Daver N; de Groot JF; Dong JW; Feng N; Gao G; Gay J; Do MG; Greer J; Giuliani V; Han J; Han L; Henry VK; Hirst J; Huang S; Jiang Y; Kang Z; Khor T; Konoplev S; Lin YH; Liu G; Lodi A; Lofton T; Ma H; Mahendra M; Matre P; Mullinax R; Peoples M; Petrocchi A; Rodriguez-Canale J; Serreli R; Shi T; Smith M; Tabe Y; Theroff J; Tiziani S; Xu Q; Zhang Q; Muller F; DePinho RA; Toniatti C; Draetta GF; Heffernan TP; Konopleva M; Jones P; Di Francesco ME; Marszalek JR Nat Med; 2018 Jul; 24(7):1036-1046. PubMed ID: 29892070 [TBL] [Abstract][Full Text] [Related]
13. Is reliance on mitochondrial respiration a "chink in the armor" of therapy-resistant cancer? Wolf DA Cancer Cell; 2014 Dec; 26(6):788-795. PubMed ID: 25490445 [TBL] [Abstract][Full Text] [Related]
14. Targeting mitochondrial function for the treatment of breast cancer. Deus CM; Coelho AR; Serafim TL; Oliveira PJ Future Med Chem; 2014 Sep; 6(13):1499-513. PubMed ID: 25365234 [TBL] [Abstract][Full Text] [Related]
15. Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia. Baccelli I; Gareau Y; Lehnertz B; Gingras S; Spinella JF; Corneau S; Mayotte N; Girard S; Frechette M; Blouin-Chagnon V; Leveillé K; Boivin I; MacRae T; Krosl J; Thiollier C; Lavallée VP; Kanshin E; Bertomeu T; Coulombe-Huntington J; St-Denis C; Bordeleau ME; Boucher G; Roux PP; Lemieux S; Tyers M; Thibault P; Hébert J; Marinier A; Sauvageau G Cancer Cell; 2019 Jul; 36(1):84-99.e8. PubMed ID: 31287994 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial polypeptides of the oxidative phosphorylation pathway as potential new targets for anti-cancer therapy. Tarantul VZ; Hunsmann G Med Hypotheses; 2001 Mar; 56(3):386-7. PubMed ID: 11359366 [TBL] [Abstract][Full Text] [Related]
17. Oxidative phosphorylation as a potential therapeutic target for cancer therapy. Sica V; Bravo-San Pedro JM; Stoll G; Kroemer G Int J Cancer; 2020 Jan; 146(1):10-17. PubMed ID: 31396957 [TBL] [Abstract][Full Text] [Related]
18. Compartmentalized cancer drug discovery targeting mitochondrial Hsp90 chaperones. Kang BH; Altieri DC Oncogene; 2009 Oct; 28(42):3681-8. PubMed ID: 19648961 [TBL] [Abstract][Full Text] [Related]
19. Energy Metabolism Drugs Block Triple Negative Breast Metastatic Cancer Cell Phenotype. Pacheco-Velázquez SC; Robledo-Cadena DX; Hernández-Reséndiz I; Gallardo-Pérez JC; Moreno-Sánchez R; Rodríguez-Enríquez S Mol Pharm; 2018 Jun; 15(6):2151-2164. PubMed ID: 29746779 [TBL] [Abstract][Full Text] [Related]
20. Oxidative Stress and Reprogramming of Mitochondrial Function and Dynamics as Targets to Modulate Cancer Cell Behavior and Chemoresistance. Falone S; Lisanti MP; Domenicotti C Oxid Med Cell Longev; 2019; 2019():4647807. PubMed ID: 31915507 [No Abstract] [Full Text] [Related] [Next] [New Search]