These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31186348)

  • 1. Substrate preference of an ABC importer corresponds to selective growth on β-(1,6)-galactosides in
    Theilmann MC; Fredslund F; Svensson B; Lo Leggio L; Abou Hachem M
    J Biol Chem; 2019 Aug; 294(31):11701-11711. PubMed ID: 31186348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ATP Binding Cassette Transporter Mediates the Uptake of α-(1,6)-Linked Dietary Oligosaccharides in Bifidobacterium and Correlates with Competitive Growth on These Substrates.
    Ejby M; Fredslund F; Andersen JM; Vujičić Žagar A; Henriksen JR; Andersen TL; Svensson B; Slotboom DJ; Abou Hachem M
    J Biol Chem; 2016 Sep; 291(38):20220-31. PubMed ID: 27502277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two binding proteins of the ABC transporter that confers growth of Bifidobacterium animalis subsp. lactis ATCC27673 on β-mannan possess distinct manno-oligosaccharide-binding profiles.
    Ejby M; Guskov A; Pichler MJ; Zanten GC; Schoof E; Saburi W; Slotboom DJ; Abou Hachem M
    Mol Microbiol; 2019 Jul; 112(1):114-130. PubMed ID: 30947380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697.
    Viborg AH; Katayama T; Abou Hachem M; Andersen MC; Nishimoto M; Clausen MH; Urashima T; Svensson B; Kitaoka M
    Glycobiology; 2014 Feb; 24(2):208-16. PubMed ID: 24270321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl-04.
    Ejby M; Fredslund F; Vujicic-Zagar A; Svensson B; Slotboom DJ; Abou Hachem M
    Mol Microbiol; 2013 Dec; 90(5):1100-12. PubMed ID: 24279727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes.
    Fushinobu S; Abou Hachem M
    Biochem Soc Trans; 2021 Apr; 49(2):563-578. PubMed ID: 33666221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates.
    Garrido D; Ruiz-Moyano S; Jimenez-Espinoza R; Eom HJ; Block DE; Mills DA
    Food Microbiol; 2013 Apr; 33(2):262-70. PubMed ID: 23200660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A β1-6/β1-3 galactosidase from Bifidobacterium animalis subsp. lactis Bl-04 gives insight into sub-specificities of β-galactoside catabolism within Bifidobacterium.
    Viborg AH; Fredslund F; Katayama T; Nielsen SK; Svensson B; Kitaoka M; Lo Leggio L; Abou Hachem M
    Mol Microbiol; 2014 Oct; ():. PubMed ID: 25287704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput virtual screening and microsecond MD simulations to identify potential sugar mimic of the solute-binding protein BlAXBP of the ABC transporter from Bifidobacterium animalis subsp. Lactis.
    Zhang Y; Li A
    Comput Biol Chem; 2021 Aug; 93():107541. PubMed ID: 34273720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of α-l-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42.
    Viborg AH; Katayama T; Arakawa T; Abou Hachem M; Lo Leggio L; Kitaoka M; Svensson B; Fushinobu S
    J Biol Chem; 2017 Dec; 292(51):21092-21101. PubMed ID: 29061847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate recognition mode of a glycoside hydrolase family 42 β-galactosidase from
    Gotoh A; Hidaka M; Sakurama H; Nishimoto M; Kitaoka M; Sakanaka M; Fushinobu S; Katayama T
    Microbiome Res Rep; 2023; 2(3):20. PubMed ID: 38046823
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular Insight into Evolution of Symbiosis between Breast-Fed Infants and a Member of the Human Gut Microbiome Bifidobacterium longum.
    Yamada C; Gotoh A; Sakanaka M; Hattie M; Stubbs KA; Katayama-Ikegami A; Hirose J; Kurihara S; Arakawa T; Kitaoka M; Okuda S; Katayama T; Fushinobu S
    Cell Chem Biol; 2017 Apr; 24(4):515-524.e5. PubMed ID: 28392148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04.
    Andersen JM; Barrangou R; Abou Hachem M; Lahtinen SJ; Goh YJ; Svensson B; Klaenhammer TR
    BMC Genomics; 2013 May; 14():312. PubMed ID: 23663691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes.
    Morrill J; Kulcinskaja E; Sulewska AM; Lahtinen S; Stålbrand H; Svensson B; Abou Hachem M
    BMC Biochem; 2015 Nov; 16():26. PubMed ID: 26558435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of β1→6-galactosidase from Bifidobacterium bifidum S17: trimeric architecture, molecular determinants of the enzymatic activity and its inhibition by α-galactose.
    Godoy AS; Camilo CM; Kadowaki MA; Muniz HD; Espirito Santo M; Murakami MT; Nascimento AS; Polikarpov I
    FEBS J; 2016 Nov; 283(22):4097-4112. PubMed ID: 27685756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides.
    Yoshida E; Sakurama H; Kiyohara M; Nakajima M; Kitaoka M; Ashida H; Hirose J; Katayama T; Yamamoto K; Kumagai H
    Glycobiology; 2012 Mar; 22(3):361-8. PubMed ID: 21926104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk-derived oligosaccharides and Bifidobacterium animalis subsp. lactis CNCM I-3446.
    Simeoni U; Berger B; Junick J; Blaut M; Pecquet S; Rezzonico E; Grathwohl D; Sprenger N; Brüssow H; ; Szajewska H; Bartoli JM; Brevaut-Malaty V; Borszewska-Kornacka M; Feleszko W; François P; Gire C; Leclaire M; Maurin JM; Schmidt S; Skórka A; Squizzaro C; Verdot JJ
    Environ Microbiol; 2016 Jul; 18(7):2185-95. PubMed ID: 26626365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting the Evolutionary Development of the Species
    Lugli GA; Mancino W; Milani C; Duranti S; Mancabelli L; Napoli S; Mangifesta M; Viappiani A; Anzalone R; Longhi G; van Sinderen D; Ventura M; Turroni F
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic and metabolomic analysis of prebiotics utilization by Bifidobacterium animalis.
    Liu T; Bai H; Wang S; Gong W; Wang Z
    World J Microbiol Biotechnol; 2024 Jun; 40(8):257. PubMed ID: 38937374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Genes and Metabolite Trends in Bifidobacterium longum subsp. infantis Bi-26 Metabolism of Human Milk Oligosaccharide 2'-fucosyllactose.
    Zabel B; Yde CC; Roos P; Marcussen J; Jensen HM; Salli K; Hirvonen J; Ouwehand AC; Morovic W
    Sci Rep; 2019 May; 9(1):7983. PubMed ID: 31138818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.