These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31186348)

  • 21. Enzymatic ability of Bifidobacterium animalis subsp. lactis to hydrolyze milk proteins: identification and characterization of endopeptidase O.
    Janer C; Arigoni F; Lee BH; Peláez C; Requena T
    Appl Environ Microbiol; 2005 Dec; 71(12):8460-5. PubMed ID: 16332835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional and Functional Analysis of Bifidobacterium animalis subsp. lactis Exposure to Tetracycline.
    Morovic W; Roos P; Zabel B; Hidalgo-Cantabrana C; Kiefer A; Barrangou R
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30266728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient synthesis of α-galactosyl oligosaccharides using a mutant Bacteroides thetaiotaomicron retaining α-galactosidase (BtGH97b).
    Okuyama M; Matsunaga K; Watanabe KI; Yamashita K; Tagami T; Kikuchi A; Ma M; Klahan P; Mori H; Yao M; Kimura A
    FEBS J; 2017 Mar; 284(5):766-783. PubMed ID: 28103425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of α- and β-galactosidases from Bifidobacterium longum subsp. longum RD47.
    Han YR; Youn SY; Ji GE; Park MS
    J Microbiol Biotechnol; 2014 May; 24(5):675-82. PubMed ID: 24608564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans.
    Garrido D; Kim JH; German JB; Raybould HE; Mills DA
    PLoS One; 2011 Mar; 6(3):e17315. PubMed ID: 21423604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and thermodynamic analyses of solute-binding Protein from Bifidobacterium longum specific for core 1 disaccharide and lacto-N-biose I.
    Suzuki R; Wada J; Katayama T; Fushinobu S; Wakagi T; Shoun H; Sugimoto H; Tanaka A; Kumagai H; Ashida H; Kitaoka M; Yamamoto K
    J Biol Chem; 2008 May; 283(19):13165-73. PubMed ID: 18332142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structures of a glycoside hydrolase family 20 lacto-N-biosidase from Bifidobacterium bifidum.
    Ito T; Katayama T; Hattie M; Sakurama H; Wada J; Suzuki R; Ashida H; Wakagi T; Yamamoto K; Stubbs KA; Fushinobu S
    J Biol Chem; 2013 Apr; 288(17):11795-806. PubMed ID: 23479733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oligosaccharides Released from Milk Glycoproteins Are Selective Growth Substrates for Infant-Associated Bifidobacteria.
    Karav S; Le Parc A; Leite Nobrega de Moura Bell JM; Frese SA; Kirmiz N; Block DE; Barile D; Mills DA
    Appl Environ Microbiol; 2016 Jun; 82(12):3622-3630. PubMed ID: 27084007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression.
    Sakurama H; Kiyohara M; Wada J; Honda Y; Yamaguchi M; Fukiya S; Yokota A; Ashida H; Kumagai H; Kitaoka M; Yamamoto K; Katayama T
    J Biol Chem; 2013 Aug; 288(35):25194-25206. PubMed ID: 23843461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of the beta-glucosidase gene from Bifidobacterium animalis subsp. lactis and its expression in B. bifidum BGN4.
    Youn SY; Park MS; Ji GE
    J Microbiol Biotechnol; 2012 Dec; 22(12):1714-23. PubMed ID: 23221535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro growth of four individual human gut bacteria on oligosaccharides produced by chemoenzymatic synthesis.
    Vigsnaes LK; Nakai H; Hemmingsen L; Andersen JM; Lahtinen SJ; Rasmussen LE; Hachem MA; Petersen BO; Duus JØ; Meyer AS; Licht TR; Svensson B
    Food Funct; 2013 Apr; 4(5):784-93. PubMed ID: 23580006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Galacto- and Fructo-oligosaccharides Utilized for Growth by Cocultures of Bifidobacterial Species Characteristic of the Infant Gut.
    Sims IM; Tannock GW
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220841
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification, crystallization and preliminary X-ray analysis of the galacto-N-biose-/lacto-N-biose I-binding protein (GL-BP) of the ABC transporter from Bifidobacterium longum JCM1217.
    Wada J; Suzuki R; Fushinobu S; Kitaoka M; Wakagi T; Shoun H; Ashida H; Kumagai H; Katayama T; Yamamoto K
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Sep; 63(Pt 9):751-3. PubMed ID: 17768345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of genes involved in galactooligosaccharide utilization in
    Sotoya H; Shigehisa A; Hara T; Matsumoto H; Hatano H; Matsuki T
    Microbiology (Reading); 2017 Oct; 163(10):1420-1428. PubMed ID: 28920844
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple Transporters and Glycoside Hydrolases Are Involved in Arabinoxylan-Derived Oligosaccharide Utilization in Bifidobacterium pseudocatenulatum.
    Saito Y; Shigehisa A; Watanabe Y; Tsukuda N; Moriyama-Ohara K; Hara T; Matsumoto S; Tsuji H; Matsuki T
    Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33036985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Next-generation prebiotic promotes selective growth of bifidobacteria, suppressing
    Hirano R; Sakanaka M; Yoshimi K; Sugimoto N; Eguchi S; Yamauchi Y; Nara M; Maeda S; Ami Y; Gotoh A; Katayama T; Iida N; Kato T; Ohno H; Fukiya S; Yokota A; Nishimoto M; Kitaoka M; Nakai H; Kurihara S
    Gut Microbes; 2021; 13(1):1973835. PubMed ID: 34553672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions.
    Egan M; Bottacini F; O'Connell Motherway M; Casey PG; Morrissey R; Melgar S; Faurie JM; Chervaux C; Smokvina T; van Sinderen D
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10645-10663. PubMed ID: 30306201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isomer-specific consumption of galactooligosaccharides by bifidobacterial species.
    Peacock KS; Ruhaak LR; Tsui MK; Mills DA; Lebrilla CB
    J Agric Food Chem; 2013 Dec; 61(51):12612-12619. PubMed ID: 24313277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic synthesis of β-galactosyl fucose using recombinant bifidobacterial β-galactosidase and its prebiotic effect.
    Oh SY; Park MS; Lee YG; Thi NN; Baek NI; Ji GE
    Glycoconj J; 2019 Jun; 36(3):199-209. PubMed ID: 31030313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense.
    Bunesova V; Lacroix C; Schwab C
    BMC Microbiol; 2016 Oct; 16(1):248. PubMed ID: 27782805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.