These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31186369)

  • 1. Biochemical validation of a second class of tetrahydrofolate riboswitches in bacteria.
    Chen X; Mirihana Arachchilage G; Breaker RR
    RNA; 2019 Sep; 25(9):1091-1097. PubMed ID: 31186369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based characterization and compound identification of the wild-type THF class-II riboswitch.
    Li C; Xu X; Geng Z; Zheng L; Song Q; Shen X; Wu J; Zhao J; Li H; He M; Tai X; Zhang L; Ma J; Dong Y; Ren A
    Nucleic Acids Res; 2024 Aug; 52(14):8454-8465. PubMed ID: 38769061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes.
    Zhang M; Liu G; Zhang Y; Chen T; Feng S; Cai R; Lu C
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into translation regulation by the THF-II riboswitch.
    Xu L; Xiao Y; Zhang J; Fang X
    Nucleic Acids Res; 2023 Jan; 51(2):952-965. PubMed ID: 36620887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical Validation of a Second Guanidine Riboswitch Class in Bacteria.
    Sherlock ME; Malkowski SN; Breaker RR
    Biochemistry; 2017 Jan; 56(2):352-358. PubMed ID: 28001368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch.
    Huang L; Ishibe-Murakami S; Patel DJ; Serganov A
    Proc Natl Acad Sci U S A; 2011 Sep; 108(36):14801-6. PubMed ID: 21873197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate.
    Ames TD; Rodionov DA; Weinberg Z; Breaker RR
    Chem Biol; 2010 Jul; 17(7):681-5. PubMed ID: 20659680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria.
    Corbino KA; Barrick JE; Lim J; Welz R; Tucker BJ; Puskarz I; Mandal M; Rudnick ND; Breaker RR
    Genome Biol; 2005; 6(8):R70. PubMed ID: 16086852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical Validation of a Third Guanidine Riboswitch Class in Bacteria.
    Sherlock ME; Breaker RR
    Biochemistry; 2017 Jan; 56(2):359-363. PubMed ID: 28001372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Riboswitch diversity and distribution.
    McCown PJ; Corbino KA; Stav S; Sherlock ME; Breaker RR
    RNA; 2017 Jul; 23(7):995-1011. PubMed ID: 28396576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric pathways in tetrahydrofolate sensing riboswitch with dynamics correlation network.
    Zhang JM; Jiang C; Ye W; Luo R; Chen HF
    Mol Biosyst; 2016 Dec; 13(1):156-164. PubMed ID: 27841427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer.
    Trausch JJ; Ceres P; Reyes FE; Batey RT
    Structure; 2011 Oct; 19(10):1413-23. PubMed ID: 21906956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches.
    Mirihana Arachchilage G; Sherlock ME; Weinberg Z; Breaker RR
    RNA Biol; 2018 Mar; 15(3):371-378. PubMed ID: 29106323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical Validation of a Fourth Guanidine Riboswitch Class in Bacteria.
    Salvail H; Balaji A; Yu D; Roth A; Breaker RR
    Biochemistry; 2020 Dec; 59(49):4654-4662. PubMed ID: 33236895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ancient riboswitch class in bacteria regulates purine biosynthesis and one-carbon metabolism.
    Kim PB; Nelson JW; Breaker RR
    Mol Cell; 2015 Jan; 57(2):317-28. PubMed ID: 25616067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs.
    Deigan KE; Ferré-D'Amaré AR
    Acc Chem Res; 2011 Dec; 44(12):1329-38. PubMed ID: 21615107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges of ligand identification for the second wave of orphan riboswitch candidates.
    Greenlee EB; Stav S; Atilho RM; Brewer KI; Harris KA; Malkowski SN; Mirihana Arachchilage G; Perkins KR; Sherlock ME; Breaker RR
    RNA Biol; 2018 Mar; 15(3):377-390. PubMed ID: 29135333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide discovery of structured noncoding RNAs in bacteria.
    Stav S; Atilho RM; Mirihana Arachchilage G; Nguyen G; Higgs G; Breaker RR
    BMC Microbiol; 2019 Mar; 19(1):66. PubMed ID: 30902049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evolving tale of two interacting RNAs-themes and variations of the T-box riboswitch mechanism.
    Suddala KC; Zhang J
    IUBMB Life; 2019 Aug; 71(8):1167-1180. PubMed ID: 31206978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bacterial riboswitch class senses xanthine and uric acid to regulate genes associated with purine oxidation.
    Yu D; Breaker RR
    RNA; 2020 Aug; 26(8):960-968. PubMed ID: 32345632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.