These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31186496)

  • 1. Ultrafast thermal-free photoluminescence of coherently extended single quantum states.
    Matsuda T; Ichimiya M; Ashida M; Ishihara H
    Sci Rep; 2019 Jun; 9(1):8453. PubMed ID: 31186496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergetic Enhancement of Light-Matter Interaction by Nonlocality and Band Degeneracy in ZnO Thin Films.
    Kinoshita T; Matsuda T; Takahashi T; Ichimiya M; Ashida M; Furukawa Y; Nakayama M; Ishihara H
    Phys Rev Lett; 2019 Apr; 122(15):157401. PubMed ID: 31050541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent interaction between free electrons and a photonic cavity.
    Wang K; Dahan R; Shentcis M; Kauffmann Y; Ben Hayun A; Reinhardt O; Tsesses S; Kaminer I
    Nature; 2020 Jun; 582(7810):50-54. PubMed ID: 32494081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.
    Hughes S; Agarwal GS
    Phys Rev Lett; 2017 Feb; 118(6):063601. PubMed ID: 28234504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Photon Spontaneous Emission in Atomically Thin Plasmonic Nanostructures.
    Muniz Y; Manjavacas A; Farina C; Dalvit DAR; Kort-Kamp WJM
    Phys Rev Lett; 2020 Jul; 125(3):033601. PubMed ID: 32745430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of quantum state collapse and revival due to the single-photon Kerr effect.
    Kirchmair G; Vlastakis B; Leghtas Z; Nigg SE; Paik H; Ginossar E; Mirrahimi M; Frunzio L; Girvin SM; Schoelkopf RJ
    Nature; 2013 Mar; 495(7440):205-9. PubMed ID: 23486059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling spin relaxation with a cavity.
    Bienfait A; Pla JJ; Kubo Y; Zhou X; Stern M; Lo CC; Weis CD; Schenkel T; Vion D; Esteve D; Morton JJ; Bertet P
    Nature; 2016 Mar; 531(7592):74-7. PubMed ID: 26878235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of squeezed light from one atom excited with two photons.
    Ourjoumtsev A; Kubanek A; Koch M; Sames C; Pinkse PW; Rempe G; Murr K
    Nature; 2011 Jun; 474(7353):623-6. PubMed ID: 21720367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherence in cooperative photon emission from indistinguishable quantum emitters.
    Koong ZX; Cygorek M; Scerri E; Santana TS; Park SI; Song JD; Gauger EM; Gerardot BD
    Sci Adv; 2022 Mar; 8(11):eabm8171. PubMed ID: 35302855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent Interference Fringes of Two-Photon Photoluminescence in Individual Au Nanoparticles: The Critical Role of the Intermediate State.
    Li Y; Yang Y; Qin C; Song Y; Han S; Zhang G; Chen R; Hu J; Xiao L; Jia S
    Phys Rev Lett; 2021 Aug; 127(7):073902. PubMed ID: 34459625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photon statistics in the cooperative spontaneous emission.
    Temnov VV; Woggon U
    Opt Express; 2009 Mar; 17(7):5774-82. PubMed ID: 19333346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic nanobar-on-mirror antenna with giant local chirality: a new platform for ultrafast chiral single-photon emission.
    Hu H; Chen W; Han X; Wang K; Lu P
    Nanoscale; 2022 Feb; 14(6):2287-2295. PubMed ID: 35081195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute Photoluminescence Quantum Yield Measurement in a Complex Nanoscopic System with Multiple Overlapping States.
    Karedla N; Enderlein J; Gregor I; Chizhik AI
    J Phys Chem Lett; 2014 Apr; 5(7):1198-202. PubMed ID: 26274471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavity-enhanced coherent light scattering from a quantum dot.
    Bennett AJ; Lee JP; Ellis DJ; Meany T; Murray E; Floether FF; Griffths JP; Farrer I; Ritchie DA; Shields AJ
    Sci Adv; 2016 Apr; 2(4):e1501256. PubMed ID: 27152337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging of Plasmonic Chiral Radiative Local Density of States with Cathodoluminescence Nanoscopy.
    Zu S; Han T; Jiang M; Liu Z; Jiang Q; Lin F; Zhu X; Fang Z
    Nano Lett; 2019 Feb; 19(2):775-780. PubMed ID: 30596507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy.
    Han D; Xue B; Du J; Kobayashi T; Miyatake T; Tamiaki H; Xing X; Yuan W; Li Y; Leng Y
    Phys Chem Chem Phys; 2016 Sep; 18(35):24252-60. PubMed ID: 27531576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities.
    Ishii A; He X; Hartmann NF; Machiya H; Htoon H; Doorn SK; Kato YK
    Nano Lett; 2018 Jun; 18(6):3873-3878. PubMed ID: 29781621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.
    Hoang TB; Akselrod GM; Mikkelsen MH
    Nano Lett; 2016 Jan; 16(1):270-5. PubMed ID: 26606001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity.
    Thyrrestrup H; Hartsuiker A; GĂ©rard JM; Vos WL
    Opt Express; 2013 Oct; 21(20):23130-44. PubMed ID: 24104228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.