BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31186742)

  • 1. Growth inhibitory efficacy of
    Telang NT; Nair HB; Wong GYC
    Oncol Lett; 2019 Jun; 17(6):5261-5266. PubMed ID: 31186742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth Inhibitory Efficacy of Chinese Herbs in a Cellular Model for Triple-Negative Breast Cancer.
    Telang NT; Nair HB; Wong GYC
    Pharmaceuticals (Basel); 2021 Dec; 14(12):. PubMed ID: 34959717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-proliferative effects of Chinese herb Cornus officinalis in a cell culture model for estrogen receptor-positive clinical breast cancer.
    Telang NT; Li G; Sepkovic DW; Bradlow HL; Wong GY
    Mol Med Rep; 2012 Jan; 5(1):22-8. PubMed ID: 21971582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-proliferative and pro-apoptotic effects of rosemary and constituent terpenoids in a model for the HER-2-enriched molecular subtype of clinical breast cancer.
    Telang N
    Oncol Lett; 2018 Oct; 16(4):5489-5497. PubMed ID: 30214619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth inhibitory efficacy and anti-aromatase activity of
    Telang N; Nair HB; Wong GYC
    Biomed Rep; 2019 Nov; 11(5):222-229. PubMed ID: 31632670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth inhibitory efficacy of natural products in a model for triple negative molecular subtype of clinical breast cancer.
    Telang N
    Biomed Rep; 2017 Sep; 7(3):199-204. PubMed ID: 28819559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miR-1207-5p regulates the sensitivity of triple-negative breast cancer cells to Taxol treatment via the suppression of LZTS1 expression.
    Hou X; Niu Z; Liu L; Guo Q; Li H; Yang X; Zhang X
    Oncol Lett; 2019 Jan; 17(1):990-998. PubMed ID: 30655858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MELK as a potential target to control cell proliferation in triple-negative breast cancer MDA-MB-231 cells.
    Li G; Yang M; Zuo L; Wang MX
    Oncol Lett; 2018 Jun; 15(6):9934-9940. PubMed ID: 29805690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-tumor and anti-metastasis efficacy of E6201, a MEK1 inhibitor, in preclinical models of triple-negative breast cancer.
    Lee J; Lim B; Pearson T; Choi K; Fuson JA; Bartholomeusz C; Paradiso LJ; Myers T; Tripathy D; Ueno NT
    Breast Cancer Res Treat; 2019 Jun; 175(2):339-351. PubMed ID: 30826934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gomisin G Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing AKT Phosphorylation and Decreasing Cyclin D1.
    Maharjan S; Park BK; Lee SI; Lim Y; Lee K; Kwon HJ
    Biomol Ther (Seoul); 2018 May; 26(3):322-327. PubMed ID: 29587339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite.
    Liao WS; Ho Y; Lin YW; Naveen Raj E; Liu KK; Chen C; Zhou XZ; Lu KP; Chao JI
    Acta Biomater; 2019 Mar; 86():395-405. PubMed ID: 30660004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effects of Chinese nutritional herbs in isogenic breast carcinoma cells with modulated estrogen receptor function.
    Telang N; Li G; Katdare M; Sepkovic D; Bradlow L; Wong G
    Oncol Lett; 2016 Nov; 12(5):3949-3957. PubMed ID: 27895755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis, and validation of novel nitrogen-based chalcone analogs against triple negative breast cancer.
    Elkhalifa D; Siddique AB; Qusa M; Cyprian FS; El Sayed K; Alali F; Al Moustafa AE; Khalil A
    Eur J Med Chem; 2020 Feb; 187():111954. PubMed ID: 31838326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gallic acid induces G1 phase arrest and apoptosis of triple-negative breast cancer cell MDA-MB-231 via p38 mitogen-activated protein kinase/p21/p27 axis.
    Lee HL; Lin CS; Kao SH; Chou MC
    Anticancer Drugs; 2017 Nov; 28(10):1150-1156. PubMed ID: 28938245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curcumol triggers apoptosis of p53 mutant triple-negative human breast cancer MDA-MB 231 cells via activation of p73 and PUMA.
    Huang L; Li A; Liao G; Yang F; Yang J; Chen X; Jiang X
    Oncol Lett; 2017 Jul; 14(1):1080-1088. PubMed ID: 28693277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells.
    Jagadish N; Gupta N; Agarwal S; Parashar D; Sharma A; Fatima R; Topno AP; Kumar V; Suri A
    Tumour Biol; 2016 Oct; 37(10):13101-13110. PubMed ID: 27449044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estrogen receptor-α36 is involved in icaritin induced growth inhibition of triple-negative breast cancer cells.
    Wang X; Zheng N; Dong J; Wang X; Liu L; Huang J
    J Steroid Biochem Mol Biol; 2017 Jul; 171():318-327. PubMed ID: 28529129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Dietary Flavonoid Fisetin Causes Cell Cycle Arrest, Caspase-Dependent Apoptosis, and Enhanced Cytotoxicity of Chemotherapeutic Drugs in Triple-Negative Breast Cancer Cells.
    Smith ML; Murphy K; Doucette CD; Greenshields AL; Hoskin DW
    J Cell Biochem; 2016 Aug; 117(8):1913-25. PubMed ID: 26755433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of AMPK activation by N,N'-diarylurea FND-4b decreases growth and increases apoptosis in triple negative and estrogen-receptor positive breast cancers.
    Johnson J; Rychahou P; Sviripa VM; Weiss HL; Liu C; Watt DS; Evers BM
    PLoS One; 2019; 14(3):e0209392. PubMed ID: 30875375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the molecular mechanism underlying anticancer activity of coumestrol in triple-negative breast cancer cells.
    Zafar A; Singh S; Satija YK; Saluja D; Naseem I
    Toxicol In Vitro; 2018 Feb; 46():19-28. PubMed ID: 28986287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.