These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31186823)

  • 1. Tunable microfluidic standing air bubbles and its application in acoustic microstreaming.
    Liu J; Li B; Zhu T; Zhou Y; Li S; Guo S; Li T
    Biomicrofluidics; 2019 May; 13(3):034114. PubMed ID: 31186823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standing Air Bubble-Based Micro-Hydraulic Capacitors for Flow Stabilization in Syringe Pump-Driven Systems.
    Zhou Y; Liu J; Yan J; Zhu T; Guo S; Li S; Li T
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32290176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of Microstreaming by Nonspherical Bubble Oscillations in an Acoustic Levitation System.
    Inserra C; Regnault G; Cleve S; Mauger C; Blanc-Benon P
    J Vis Exp; 2021 May; (171):. PubMed ID: 34028449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic sequential fluid handling with multilayer microfluidic sample isolated pumping.
    Liu J; Fu H; Yang T; Li S
    Biomicrofluidics; 2015 Sep; 9(5):054118. PubMed ID: 26487904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth control of sessile microbubbles in PDMS devices.
    Volk A; Rossi M; Kähler CJ; Hilgenfeldt S; Marin A
    Lab Chip; 2015 Dec; 15(24):4607-13. PubMed ID: 26517506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulation of micro-objects using acoustically oscillating bubbles based on the gas permeability of PDMS.
    Liu B; Tian B; Yang X; Li M; Yang J; Li D; Oh KW
    Biomicrofluidics; 2018 May; 12(3):034111. PubMed ID: 29937951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Concentration Gradients Tunable Generator with Adjustable Position of the Acoustically Oscillating Bubbles.
    Liu B; Ma Z; Yang J; Gao G; Liu H
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32878158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of contrast agent destruction.
    Chomas JE; Dayton P; Allen J; Morgan K; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):232-48. PubMed ID: 11367791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory and experiment on resonant frequencies of liquid-air interfaces trapped in microfluidic devices.
    Chindam C; Nama N; Ian Lapsley M; Costanzo F; Jun Huang T
    J Appl Phys; 2013 Nov; 114(19):194503. PubMed ID: 24343156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaotic micromixing in open wells using audio-frequency acoustic microstreaming.
    Petkovic-Duran K; Manasseh R; Zhu Y; Ooi A
    Biotechniques; 2009 Oct; 47(4):827-34. PubMed ID: 19852766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-D swimming microdrone powered by acoustic bubbles.
    Liu FW; Cho SK
    Lab Chip; 2021 Jan; 21(2):355-364. PubMed ID: 33305767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical investigation of shear stress generated by a contrast microbubble on the cell membrane as a mechanism for sonoporation.
    Doinikov AA; Bouakaz A
    J Acoust Soc Am; 2010 Jul; 128(1):11-9. PubMed ID: 20649196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
    Doinikov AA; Bouakaz A
    Phys Med Biol; 2015 Oct; 60(20):7909-25. PubMed ID: 26407104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavitation microstreaming generated by a bubble pair in an ultrasound field.
    Wang C; Cheng J
    J Acoust Soc Am; 2013 Aug; 134(2):1675-82. PubMed ID: 23927208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. III. Case of self-interacting modes n-n.
    Inserra C; Regnault G; Cleve S; Mauger C; Doinikov AA
    Phys Rev E; 2020 Jan; 101(1-1):013111. PubMed ID: 32069617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method to account for acoustic microstreaming when predicting bubble growth rates produced by rectified diffusion.
    Church CC
    J Acoust Soc Am; 1988 Nov; 84(5):1758-64. PubMed ID: 3209776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas micronuclei that underlie decompression bubbles and decompression sickness have not been identified.
    Doolette DJ
    Diving Hyperb Med; 2019 Mar; 49(1):64. PubMed ID: 30856670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustofluidic control of bubble size in microfluidic flow-focusing configuration.
    Chong ZZ; Tor SB; Loh NH; Wong TN; Gañán-Calvo AM; Tan SH; Nguyen NT
    Lab Chip; 2015 Feb; 15(4):996-9. PubMed ID: 25510843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.