BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31187109)

  • 21. Synthesis of hypoxia imaging agent 1-(5-deoxy-5-fluoro-α-D-arabinofuranosyl)-2-nitroimidazole using microfluidic technology.
    Bouvet VR; Wuest M; Wiebe LI; Wuest F
    Nucl Med Biol; 2011 Feb; 38(2):235-45. PubMed ID: 21315279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic Preparation of a 89Zr-Labeled Trastuzumab Single-Patient Dose.
    Wright BD; Whittenberg J; Desai A; DiFelice C; Kenis PJ; Lapi SE; Reichert DE
    J Nucl Med; 2016 May; 57(5):747-52. PubMed ID: 26769862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of Radiochemical Reactions using Droplet Arrays.
    Rios A; Holloway TS; Wang J; van Dam RM
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33645586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accelerating radiochemistry development: Automated robotic platform for performing up to 64 droplet radiochemical reactions in a morning.
    Jones J; Do V; Lu Y; van Dam RM
    Chem Eng J; 2023 Jul; 468():. PubMed ID: 37576334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic Preparation of
    Earley DF; Guillou A; van der Born D; Poot AJ; Holland JP
    Molecules; 2021 Feb; 26(3):. PubMed ID: 33540712
    [No Abstract]   [Full Text] [Related]  

  • 26. An automated radiosynthesis of (S)-[
    Xie JK; Zhu XX; Wang KX; Wang SC; Xie Q
    Appl Radiat Isot; 2021 Aug; 174():109740. PubMed ID: 33940354
    [No Abstract]   [Full Text] [Related]  

  • 27. On-demand radiosynthesis of
    Kim HK; Javed MR; Chen S; Zettlitz KA; Collins J; Wu AM; Kim CCJ; Michael van Dam R; Keng PY
    RSC Adv; 2019 Oct; 9(55):32175-32183. PubMed ID: 35530758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast and repetitive in-capillary production of [18F]FDG.
    Wester HJ; Schoultz BW; Hultsch C; Henriksen G
    Eur J Nucl Med Mol Imaging; 2009 Apr; 36(4):653-8. PubMed ID: 19037638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing the feasibility of intranasal radiotracer administration for in brain PET imaging.
    Singh N; Veronese M; O'Doherty J; Sementa T; Bongarzone S; Cash D; Simmons C; Arcolin M; Marsden PK; Gee A; Turkheimer FE
    Nucl Med Biol; 2018 Nov; 66():32-39. PubMed ID: 30208358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of diverse PET probes with limited resources: 24
    Collins J; Waldmann CM; Drake C; Slavik R; Ha NS; Sergeev M; Lazari M; Shen B; Chin FT; Moore M; Sadeghi S; Phelps ME; Murphy JM; van Dam RM
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11309-11314. PubMed ID: 29073049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel
    Li S; Cai Z; Zheng MQ; Holden D; Naganawa M; Lin SF; Ropchan J; Labaree D; Kapinos M; Lara-Jaime T; Navarro A; Huang Y
    J Nucl Med; 2018 Jan; 59(1):140-146. PubMed ID: 28747521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel multi-reaction microdroplet platform for rapid radiochemistry optimization.
    Rios A; Wang J; Chao PH; van Dam RM
    RSC Adv; 2019 Jun; 9(35):20370-20374. PubMed ID: 35514735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated synthesis of
    Sørensen MA; Andersen VL; Hendel HW; Vriamont C; Warnier C; Masset J; Huynh THV
    J Labelled Comp Radiopharm; 2020 Jun; 63(8):393-403. PubMed ID: 32374450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidics for positron emission tomography probe development.
    Wang MW; Lin WY; Liu K; Masterman-Smith M; Kwang-Fu Shen C
    Mol Imaging; 2010 Aug; 9(4):175-91. PubMed ID: 20643021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. C-11 radiochemistry in cancer imaging applications.
    Tu Z; Mach RH
    Curr Top Med Chem; 2010; 10(11):1060-95. PubMed ID: 20388115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An automated radiosynthesis of [
    McCauley KS; Wilde JH; Bufalino SM; Neumann KD
    Appl Radiat Isot; 2022 Feb; 180():110032. PubMed ID: 34871885
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple microfluidic platform for rapid and efficient production of the radiotracer [
    Zhang X; Liu F; Knapp KA; Nickels ML; Manning HC; Bellan LM
    Lab Chip; 2018 May; 18(9):1369-1377. PubMed ID: 29658049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integration of World-to-Chip Interfaces with Digital Microfluidics for Bacterial Transformation and Enzymatic Assays.
    Moazami E; Perry JM; Soffer G; Husser MC; Shih SCC
    Anal Chem; 2019 Apr; 91(8):5159-5168. PubMed ID: 30945840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidics in radiopharmaceutical chemistry.
    Pascali G; Watts P; Salvadori PA
    Nucl Med Biol; 2013 Aug; 40(6):776-87. PubMed ID: 23684316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuous-Flow Synthesis of N-Succinimidyl 4-[18F]fluorobenzoate Using a Single Microfluidic Chip.
    Kimura H; Tomatsu K; Saiki H; Arimitsu K; Ono M; Kawashima H; Iwata R; Nakanishi H; Ozeki E; Kuge Y; Saji H
    PLoS One; 2016; 11(7):e0159303. PubMed ID: 27410684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.