BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 31187392)

  • 1. Mechanisms of plant protection against two oxalate-producing fungal pathogens by oxalotrophic strains of Stenotrophomonas spp.
    Marina M; Romero FM; Villarreal NM; Medina AJ; Gárriz A; Rossi FR; Martinez GA; Pieckenstain FL
    Plant Mol Biol; 2019 Aug; 100(6):659-674. PubMed ID: 31187392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxalate-degrading bacteria can protect Arabidopsis thaliana and crop plants against botrytis cinerea.
    Schoonbeek HJ; Jacquat-Bovet AC; Mascher F; Métraux JP
    Mol Plant Microbe Interact; 2007 Dec; 20(12):1535-44. PubMed ID: 17990961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.
    Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C
    J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways.
    López-Cruz J; Óscar CS; Emma FC; Pilar GA; Carmen GB
    Mol Plant Pathol; 2017 Jan; 18(1):16-31. PubMed ID: 26780422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea.
    Kravchuk Z; Vicedo B; Flors V; Camañes G; González-Bosch C; García-Agustín P
    J Plant Physiol; 2011 Mar; 168(4):359-66. PubMed ID: 20950893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of endo-1,4-β-glucanases in response to Botrytis cinerea and Pseudomonas syringae reveals their involvement in plant-pathogen interactions.
    Finiti I; Leyva MO; López-Cruz J; Calderan Rodrigues B; Vicedo B; Angulo C; Bennett AB; Grant M; García-Agustín P; González-Bosch C
    Plant Biol (Stuttg); 2013 Sep; 15(5):819-31. PubMed ID: 23528138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4.
    Ferrari S; Plotnikova JM; De Lorenzo G; Ausubel FM
    Plant J; 2003 Jul; 35(2):193-205. PubMed ID: 12848825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato.
    Rahman TA; Oirdi ME; Gonzalez-Lamothe R; Bouarab K
    Mol Plant Microbe Interact; 2012 Dec; 25(12):1584-93. PubMed ID: 22950753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The epiphytic fungus Pseudozyma aphidis induces jasmonic acid- and salicylic acid/nonexpressor of PR1-independent local and systemic resistance.
    Buxdorf K; Rahat I; Gafni A; Levy M
    Plant Physiol; 2013 Apr; 161(4):2014-22. PubMed ID: 23388119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways.
    Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F
    BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum.
    Chen X; Liu J; Lin G; Wang A; Wang Z; Lu G
    Plant Cell Rep; 2013 Oct; 32(10):1589-99. PubMed ID: 23749099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling.
    Hu Z; Shao S; Zheng C; Sun Z; Shi J; Yu J; Qi Z; Shi K
    Planta; 2018 May; 247(5):1217-1227. PubMed ID: 29445868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea.
    Gonorazky G; Guzzo MC; Abd-El-Haliem AM; Joosten MH; Laxalt AM
    Mol Plant Pathol; 2016 Dec; 17(9):1354-1363. PubMed ID: 26868615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea.
    Díaz J; ten Have A; van Kan JA
    Plant Physiol; 2002 Jul; 129(3):1341-51. PubMed ID: 12114587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea.
    Govrin EM; Levine A
    Curr Biol; 2000 Jun; 10(13):751-7. PubMed ID: 10898976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In the tripartite combination Botrytis cinerea-Arabidopsis-Eurydema oleracea, the fungal pathogen alters the plant-insect interaction via jasmonic acid signalling activation and inducible plant-emitted volatiles.
    Ederli L; Salerno G; Quaglia M
    J Plant Res; 2021 May; 134(3):523-533. PubMed ID: 33738682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spermine Is a Potent Plant Defense Activator Against Gray Mold Disease on
    Seifi HS; Zarei A; Hsiang T; Shelp BJ
    Phytopathology; 2019 Aug; 109(8):1367-1377. PubMed ID: 30990377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato.
    El Oirdi M; El Rahman TA; Rigano L; El Hadrami A; Rodriguez MC; Daayf F; Vojnov A; Bouarab K
    Plant Cell; 2011 Jun; 23(6):2405-21. PubMed ID: 21665999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR).
    Govrin EM; Levine A
    Plant Mol Biol; 2002 Feb; 48(3):267-76. PubMed ID: 11855728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Botrytis cinerea mutants deficient in D-galacturonic acid catabolism have a perturbed virulence on Nicotiana benthamiana and Arabidopsis, but not on tomato.
    Zhang L; van Kan JA
    Mol Plant Pathol; 2013 Jan; 14(1):19-29. PubMed ID: 22937823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.