BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 31187790)

  • 1. Post-synthetic modification of covalent organic frameworks.
    Segura JL; Royuela S; Mar Ramos M
    Chem Soc Rev; 2019 Jul; 48(14):3903-3945. PubMed ID: 31187790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement.
    Deria P; Mondloch JE; Karagiaridi O; Bury W; Hupp JT; Farha OK
    Chem Soc Rev; 2014 Aug; 43(16):5896-912. PubMed ID: 24723093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemistry of Covalent Organic Frameworks.
    Waller PJ; Gándara F; Yaghi OM
    Acc Chem Res; 2015 Dec; 48(12):3053-63. PubMed ID: 26580002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-synthetic modification of imine linkages of a covalent organic framework for its catalysis application.
    Yan Q; Xu H; Jing X; Hu H; Wang S; Zeng C; Gao Y
    RSC Adv; 2020 May; 10(30):17396-17403. PubMed ID: 35515583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Covalent Organic Frameworks Bearing Three Different Kinds of Pores: The Strategy for Construction and COF-to-COF Transformation via Heterogeneous Linker Exchange.
    Qian C; Qi QY; Jiang GF; Cui FZ; Tian Y; Zhao X
    J Am Chem Soc; 2017 May; 139(19):6736-6743. PubMed ID: 28445639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of Covalent Organic Frameworks via Three-Component One-Pot Strecker and Povarov Reactions.
    Li XT; Zou J; Wang TH; Ma HC; Chen GJ; Dong YB
    J Am Chem Soc; 2020 Apr; 142(14):6521-6526. PubMed ID: 32163281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Regulation and Stability Engineering of Three-Dimensional Covalent Organic Frameworks.
    Guan X; Fang Q; Yan Y; Qiu S
    Acc Chem Res; 2022 Jul; 55(14):1912-1927. PubMed ID: 35761434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Covalent Organic Frameworks: From Topology Design to Applications.
    Gui B; Lin G; Ding H; Gao C; Mal A; Wang C
    Acc Chem Res; 2020 Oct; 53(10):2225-2234. PubMed ID: 32897686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linker Exchange as Facile Method for Post-Synthetic Modification of β-Ketoenamine-linked Covalent Organic Frameworks.
    Dippold V; Vogl S; Grüneberg J; Thomas A
    Macromol Rapid Commun; 2023 Jun; 44(11):e2300046. PubMed ID: 37026544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-synthetic modifications of covalent organic frameworks (COFs) for diverse applications.
    Rejali NA; Dinari M; Wang Y
    Chem Commun (Camb); 2023 Sep; 59(78):11631-11647. PubMed ID: 37702105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Advances in enrichment and separation of
    Zhang A; Zhang J
    Se Pu; 2022 Nov; 40(11):966-978. PubMed ID: 36351805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic Covalent Interaction-based Frameworks as Emerging Catalysts for Environment and Energy Applications: Current Scenario and Opportunities.
    Rasheed T; Ahmad Hassan A; Ahmad T; Khan S; Sher F
    Chem Asian J; 2023 Jul; 18(13):e202300196. PubMed ID: 37171867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postsynthetic functionalization of covalent organic frameworks.
    Yusran Y; Guan X; Li H; Fang Q; Qiu S
    Natl Sci Rev; 2020 Jan; 7(1):170-190. PubMed ID: 34692030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Covalent Organic Frameworks with Dual Linkages for Bifunctional Cascade Catalysis.
    Li H; Pan Q; Ma Y; Guan X; Xue M; Fang Q; Yan Y; Valtchev V; Qiu S
    J Am Chem Soc; 2016 Nov; 138(44):14783-14788. PubMed ID: 27754652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Aza-Diels-Alder Reaction: Towards High-Performance Supercapacitor Materials.
    Peng H; Raya J; Richard F; Baaziz W; Ersen O; Ciesielski A; Samorì P
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19602-19609. PubMed ID: 32634276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Versatile Method for Functionalization of Covalent Organic Frameworks via Suzuki-Miyaura Cross-Coupling.
    Liao Q; Ke C; Huang X; Wang D; Han Q; Zhang Y; Zhang Y; Xi K
    Angew Chem Int Ed Engl; 2021 Jan; 60(3):1411-1416. PubMed ID: 33017485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore surface engineering of covalent organic frameworks: structural diversity and applications.
    Vardhan H; Nafady A; Al-Enizi AM; Ma S
    Nanoscale; 2019 Nov; 11(45):21679-21708. PubMed ID: 31720658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks.
    Haase F; Lotsch BV
    Chem Soc Rev; 2020 Dec; 49(23):8469-8500. PubMed ID: 33155009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic Origins of Poor Crystallinity in the Synthesis of Covalent Organic Framework COF-5.
    Nguyen V; Grünwald M
    J Am Chem Soc; 2018 Mar; 140(9):3306-3311. PubMed ID: 29394058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Conversion of Linkages in Covalent Organic Frameworks.
    Waller PJ; Lyle SJ; Osborn Popp TM; Diercks CS; Reimer JA; Yaghi OM
    J Am Chem Soc; 2016 Dec; 138(48):15519-15522. PubMed ID: 27934009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.