These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Electronic and structural elements that regulate the excited-state dynamics in purine nucleobase derivatives. Crespo-Hernández CE; Martínez-Fernández L; Rauer C; Reichardt C; Mai S; Pollum M; Marquetand P; González L; Corral I J Am Chem Soc; 2015 Apr; 137(13):4368-81. PubMed ID: 25763596 [TBL] [Abstract][Full Text] [Related]
5. Slow deactivation channels in UV-photoexcited adenine DNA. Chen X; Fang W; Wang H Phys Chem Chem Phys; 2014 Mar; 16(9):4210-9. PubMed ID: 24452764 [TBL] [Abstract][Full Text] [Related]
6. Ab initio studies on the radiationless decay mechanisms of the lowest excited singlet states of 9H-adenine. Perun S; Sobolewski AL; Domcke W J Am Chem Soc; 2005 May; 127(17):6257-65. PubMed ID: 15853331 [TBL] [Abstract][Full Text] [Related]
7. Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry. Serrano-Andrés L; Merchán M; Borin AC Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8691-6. PubMed ID: 16731617 [TBL] [Abstract][Full Text] [Related]
8. An ab initio study of substituent effects on the excited states of purine derivatives. Mburu E; Matsika S J Phys Chem A; 2008 Dec; 112(48):12485-91. PubMed ID: 18986130 [TBL] [Abstract][Full Text] [Related]
9. Excitation of nucleobases from a computational perspective I: reaction paths. Giussani A; Segarra-Martí J; Roca-Sanjuán D; Merchán M Top Curr Chem; 2015; 355():57-97. PubMed ID: 24264958 [TBL] [Abstract][Full Text] [Related]
10. A Campagnaro GD; Elati HAA; Balaska S; Martin Abril ME; Natto MJ; Hulpia F; Lee K; Sheiner L; Van Calenbergh S; de Koning HP Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054895 [No Abstract] [Full Text] [Related]
11. Excited-State Dynamics in O Ashwood B; Ortiz-Rodríguez LA; Crespo-Hernández CE J Phys Chem Lett; 2017 Sep; 8(18):4380-4385. PubMed ID: 28850232 [TBL] [Abstract][Full Text] [Related]
12. Photostability of 2,6-diaminopurine and its 2'-deoxyriboside investigated by femtosecond transient absorption spectroscopy. Caldero-Rodríguez NE; Ortiz-Rodríguez LA; Gonzalez AA; Crespo-Hernández CE Phys Chem Chem Phys; 2022 Feb; 24(7):4204-4211. PubMed ID: 35119441 [TBL] [Abstract][Full Text] [Related]
13. Low-lying excited states and nonradiative processes of the adenine analogues 7H- and 9H-2-aminopurine. Lobsiger S; Sinha RK; Trachsel M; Leutwyler S J Chem Phys; 2011 Mar; 134(11):114307. PubMed ID: 21428619 [TBL] [Abstract][Full Text] [Related]
14. MS-CASPT2 studies on the mechanistic photophysics of tellurium-substituted guanine and cytosine. Zhu YH; Zhang TS; Tang XF; Xie BB; Cui G Phys Chem Chem Phys; 2021 Jun; 23(21):12421-12430. PubMed ID: 34028476 [TBL] [Abstract][Full Text] [Related]
15. A three-state model for the photophysics of guanine. Serrano-Andrés L; Merchán M; Borin AC J Am Chem Soc; 2008 Feb; 130(8):2473-84. PubMed ID: 18215036 [TBL] [Abstract][Full Text] [Related]
16. A three-state model for the photophysics of adenine. Serrano-Andrés L; Merchán M; Borin AC Chemistry; 2006 Aug; 12(25):6559-71. PubMed ID: 16789030 [TBL] [Abstract][Full Text] [Related]
17. Details of the excited-state potential energy surfaces of adenine by coupled cluster techniques. Benda Z; Szalay PG J Phys Chem A; 2014 Aug; 118(32):6197-207. PubMed ID: 25026452 [TBL] [Abstract][Full Text] [Related]