BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 31187898)

  • 1. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling.
    Rajendran S; Shen X; Glawe J; Kolluru GK; Kevil CG
    Compr Physiol; 2019 Jun; 9(3):1213-1247. PubMed ID: 31187898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Remodeling.
    Yuan S; Kevil CG
    Microcirculation; 2016 Feb; 23(2):134-45. PubMed ID: 26381654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remodeling of Cerebral Microcirculation after Ischemia-Reperfusion.
    Lapi D; Colantuoni A
    J Vasc Res; 2015; 52(1):22-31. PubMed ID: 25896412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cystathionine γ-Lyase Modulates Flow-Dependent Vascular Remodeling.
    Yuan S; Yurdagul A; Peretik JM; Alfaidi M; Al Yafeai Z; Pardue S; Kevil CG; Orr AW
    Arterioscler Thromb Vasc Biol; 2018 Sep; 38(9):2126-2136. PubMed ID: 30002061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation and role of endogenously produced hydrogen sulfide in angiogenesis.
    Katsouda A; Bibli SI; Pyriochou A; Szabo C; Papapetropoulos A
    Pharmacol Res; 2016 Nov; 113(Pt A):175-185. PubMed ID: 27569706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions.
    Singh S; Kumar V; Kapoor D; Kumar S; Singh S; Dhanjal DS; Datta S; Samuel J; Dey P; Wang S; Prasad R; Singh J
    Physiol Plant; 2020 Feb; 168(2):301-317. PubMed ID: 31264712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide and angiogenesis in cardiovascular disease.
    Murohara T; Asahara T
    Antioxid Redox Signal; 2002 Oct; 4(5):825-31. PubMed ID: 12470511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox signaling in vascular angiogenesis.
    Maulik N; Das DK
    Free Radic Biol Med; 2002 Oct; 33(8):1047-60. PubMed ID: 12374616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous vascular remodeling in ischemic skeletal muscle: a role for nitric oxide.
    Buckwalter JB; Curtis VC; Valic Z; Ruble SB; Clifford PS
    J Appl Physiol (1985); 2003 Mar; 94(3):935-40. PubMed ID: 12391140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications.
    Silvestre JS; Smadja DM; Lévy BI
    Physiol Rev; 2013 Oct; 93(4):1743-802. PubMed ID: 24137021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of c-Kit function impairs arteriogenesis in a mouse model of hindlimb ischemia.
    Hernandez DR; Artiles A; Duque JC; Martinez L; Pinto MT; Webster KA; Velazquez OC; Vazquez-Padron RI; Lassance-Soares RM
    Surgery; 2018 Apr; 163(4):877-882. PubMed ID: 29287914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of hydrogen sulphide in physiological and pathological angiogenesis.
    Zhang YX; Jing MR; Cai CB; Zhu SG; Zhang CJ; Wang QM; Zhai YK; Ji XY; Wu DD
    Cell Prolif; 2023 Mar; 56(3):e13374. PubMed ID: 36478328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of endoglin in post-ischemic revascularization.
    Núñez-Gómez E; Pericacho M; Ollauri-Ibáñez C; Bernabéu C; López-Novoa JM
    Angiogenesis; 2017 Feb; 20(1):1-24. PubMed ID: 27943030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species.
    Hancock JT; Whiteman M
    Ann N Y Acad Sci; 2016 Feb; 1365(1):5-14. PubMed ID: 25782612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis.
    Sonveaux P; Martinive P; DeWever J; Batova Z; Daneau G; Pelat M; Ghisdal P; Grégoire V; Dessy C; Balligand JL; Feron O
    Circ Res; 2004 Jul; 95(2):154-61. PubMed ID: 15205364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Update on Hydrogen Sulfide and Nitric Oxide Interactions in the Cardiovascular System.
    Wu D; Hu Q; Zhu D
    Oxid Med Cell Longev; 2018; 2018():4579140. PubMed ID: 30271527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microvascular remodeling: a complex continuum spanning angiogenesis to arteriogenesis.
    Peirce SM; Skalak TC
    Microcirculation; 2003 Jan; 10(1):99-111. PubMed ID: 12610666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a novel hydrogen sulfide prodrug in a porcine model of acute limb ischemia.
    Rushing AM; Donnarumma E; Polhemus DJ; Au KR; Victoria SE; Schumacher JD; Li Z; Jenkins JS; Lefer DJ; Goodchild TT
    J Vasc Surg; 2019 Jun; 69(6):1924-1935. PubMed ID: 30777693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen sulfide, a signaling molecule in plant stress responses.
    Zhang J; Zhou M; Zhou H; Zhao D; Gotor C; Romero LC; Shen J; Ge Z; Zhang Z; Shen W; Yuan X; Xie Y
    J Integr Plant Biol; 2021 Jan; 63(1):146-160. PubMed ID: 33058490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms.
    Vacek TP; Rehman S; Neamtu D; Yu S; Givimani S; Tyagi SC
    Vasc Health Risk Manag; 2015; 11():173-83. PubMed ID: 25767394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.