These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31187922)

  • 41. A PCR-based method that permits specific detection of Paenibacillus larvae subsp. larvae, the cause of American Foulbrood of honey bees, at the subspecies level.
    Alippi AM; López AC; Aguilar OM
    Lett Appl Microbiol; 2004; 39(1):25-33. PubMed ID: 15189284
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae.
    Garcia-Gonzalez E; Müller S; Hertlein G; Heid N; Süssmuth RD; Genersch E
    Microbiologyopen; 2014 Oct; 3(5):642-56. PubMed ID: 25044543
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The N-terminus of Paenibacillus larvae C3larvinA modulates catalytic efficiency.
    Turner M; Heney KA; Merrill AR
    Biosci Rep; 2021 Jan; 41(1):. PubMed ID: 33289829
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation.
    Genersch E; Forsgren E; Pentikäinen J; Ashiralieva A; Rauch S; Kilwinski J; Fries I
    Int J Syst Evol Microbiol; 2006 Mar; 56(Pt 3):501-511. PubMed ID: 16514018
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low-molecular-weight metabolites secreted by Paenibacillus larvae as potential virulence factors of American foulbrood.
    Schild HA; Fuchs SW; Bode HB; Grünewald B
    Appl Environ Microbiol; 2014 Apr; 80(8):2484-92. PubMed ID: 24509920
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of bodily fluids from honey bee (Apis mellifera) larvae on growth and genome-wide transcriptional response of the causal agent of American Foulbrood disease (Paenibacillus larvae).
    De Smet L; De Koker D; Hawley AK; Foster LJ; De Vos P; de Graaf DC
    PLoS One; 2014; 9(2):e89175. PubMed ID: 24586572
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heterologous expression of green fluorescent protein in Paenibacillus larvae, the causative agent of American Foulbrood of honey bees.
    Poppinga L; Genersch E
    J Appl Microbiol; 2012 Mar; 112(3):430-5. PubMed ID: 22151200
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular diversity of
    Amšiejute P; Jurgelevičius V; Mačiulskis P; Butrimaite-Ambrozevičiene C; Pilevičiene S; Janeliunas Z; Kutyriova T; Jacevičiene I; Paulauskas A
    Front Vet Sci; 2022; 9():959636. PubMed ID: 36072387
    [No Abstract]   [Full Text] [Related]  

  • 49. Transcriptional response of honey bee larvae infected with the bacterial pathogen Paenibacillus larvae.
    Cornman RS; Lopez D; Evans JD
    PLoS One; 2013; 8(6):e65424. PubMed ID: 23762370
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Beneficial bacteria as biocontrol agents for American foulbrood disease in honey bees (Apis mellifera).
    Ye M; Li X; Yang F; Zhou B
    J Insect Sci; 2023 Mar; 23(2):. PubMed ID: 36947033
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Different impacts of pMP19 on the virulence of Melissococcus plutonius strains with different genetic backgrounds.
    Nakamura K; Okumura K; Harada M; Okamoto M; Okura M; Takamatsu D
    Environ Microbiol; 2020 Jul; 22(7):2756-2770. PubMed ID: 32219986
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Putative determinants of virulence in
    Grossar D; Kilchenmann V; Forsgren E; Charrière JD; Gauthier L; Chapuisat M; Dietemann V
    Virulence; 2020 Dec; 11(1):554-567. PubMed ID: 32456539
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multilocus sequence typing, biochemical and antibiotic resistance characterizations reveal diversity of North American strains of the honey bee pathogen Paenibacillus larvae.
    Krongdang S; Evans JD; Pettis JS; Chantawannakul P
    PLoS One; 2017; 12(5):e0176831. PubMed ID: 28467471
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Growth and Laboratory Maintenance of Paenibacillus larvae.
    Mahdi OS; Fisher NA
    Curr Protoc Microbiol; 2018 Feb; 48():9E.1.1-9E.1.6. PubMed ID: 29512117
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Honeybee-Specific Lactic Acid Bacterium Supplements Have No Effect on American Foulbrood-Infected Honeybee Colonies.
    Stephan JG; Lamei S; Pettis JS; Riesbeck K; de Miranda JR; Forsgren E
    Appl Environ Microbiol; 2019 Jul; 85(13):. PubMed ID: 31003985
    [No Abstract]   [Full Text] [Related]  

  • 56. Diagnosis of American foulbrood in honey bees: a synthesis and proposed analytical protocols.
    de Graaf DC; Alippi AM; Brown M; Evans JD; Feldlaufer M; Gregorc A; Hornitzky M; Pernal SF; Schuch DM; Titera D; Tomkies V; Ritter W
    Lett Appl Microbiol; 2006 Dec; 43(6):583-90. PubMed ID: 17083701
    [TBL] [Abstract][Full Text] [Related]  

  • 57. American Foulbrood in the Czech Republic: ERIC II Genotype of
    Biová J; Bzdil J; Dostálková S; Petřivalský M; Brus J; Carra E; Danihlík J
    Front Vet Sci; 2021; 8():698976. PubMed ID: 34485429
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proteome analysis of Paenibacillus larvae reveals the existence of a putative S-layer protein.
    Fünfhaus A; Genersch E
    Environ Microbiol Rep; 2012 Apr; 4(2):194-202. PubMed ID: 23757273
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of intact prophages in genomes of
    Ribeiro HG; Nilsson A; Melo LDR; Oliveira A
    Front Microbiol; 2022; 13():903861. PubMed ID: 35923395
    [No Abstract]   [Full Text] [Related]  

  • 60. Lactobacillus kunkeei strains decreased the infection by honey bee pathogens Paenibacillus larvae and Nosema ceranae.
    Arredondo D; Castelli L; Porrini MP; Garrido PM; Eguaras MJ; Zunino P; Antúnez K
    Benef Microbes; 2018 Feb; 9(2):279-290. PubMed ID: 29264966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.