These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 31187991)
1. Polyphenol-Protein-Polysaccharide Interactions in the Presence of Carboxymethyl Cellulose (CMC) in Wine-Like Model Systems. Sommer S; Weber F; Harbertson JF J Agric Food Chem; 2019 Jul; 67(26):7428-7434. PubMed ID: 31187991 [TBL] [Abstract][Full Text] [Related]
2. Rationale for Haze Formation after Carboxymethyl Cellulose (CMC) Addition to Red Wine. Sommer S; Dickescheid C; Harbertson JF; Fischer U; Cohen SD J Agric Food Chem; 2016 Sep; 64(36):6879-87. PubMed ID: 27571332 [TBL] [Abstract][Full Text] [Related]
3. Interactions of grape tannins and wine polyphenols with a yeast protein extract, mannoproteins and β-glucan. Mekoue Nguela J; Poncet-Legrand C; Sieczkowski N; Vernhet A Food Chem; 2016 Nov; 210():671-82. PubMed ID: 27211695 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of protein-polysaccharide interactions through ζ-potential and particle size measurements to assess their functionality in wine. Burken O; Sommer S J Food Sci; 2024 Oct; 89(10):6413-6424. PubMed ID: 39269268 [TBL] [Abstract][Full Text] [Related]
5. Protein/polysaccharide interactions and their impact on haze formation in white wines. Dufrechou M; Doco T; Poncet-Legrand C; Sauvage FX; Vernhet A J Agric Food Chem; 2015 Nov; 63(45):10042-53. PubMed ID: 26477433 [TBL] [Abstract][Full Text] [Related]
6. Applying Nanoparticle Tracking Analysis to Characterize the Polydispersity of Aggregates Resulting from Tannin-Polysaccharide Interactions in Wine-Like Media. Li S; Wilkinson KL; Mierczynska-Vasilev A; Bindon KA Molecules; 2019 Jun; 24(11):. PubMed ID: 31163608 [TBL] [Abstract][Full Text] [Related]
7. The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach. Brandão E; Silva MS; García-Estévez I; Williams P; Mateus N; Doco T; de Freitas V; Soares S Carbohydr Polym; 2017 Dec; 177():77-85. PubMed ID: 28962798 [TBL] [Abstract][Full Text] [Related]
8. Effect of the addition of mannoproteins on the interaction between wine flavonols and salivary proteins. Ramos-Pineda AM; García-Estévez I; Dueñas M; Escribano-Bailón MT Food Chem; 2018 Oct; 264():226-232. PubMed ID: 29853369 [TBL] [Abstract][Full Text] [Related]
9. Pectolytic enzyme reduces the concentration of colloidal particles in wine due to changes in polysaccharide structure and aggregation properties. Kassara S; Li S; Smith P; Blando F; Bindon K Int J Biol Macromol; 2019 Nov; 140():546-555. PubMed ID: 31404601 [TBL] [Abstract][Full Text] [Related]
10. The impact of carbohydrate-active enzymes on mediating cell wall polysaccharide-tannin interactions in a wine-like matrix. Osete-Alcaraz A; Gómez-Plaza E; Martínez-Pérez P; Weiller F; Schückel J; Willats WGT; Moore JP; Ros-García JM; Bautista-Ortín AB Food Res Int; 2020 Mar; 129():108889. PubMed ID: 32036932 [TBL] [Abstract][Full Text] [Related]
11. Commercial Bindon KA; Kassara S; Solomon M; Bartel C; Smith PA; Barker A; Curtin C Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31505886 [TBL] [Abstract][Full Text] [Related]
12. Chemical Characterization of Polysaccharide Extracts Obtained from Pomace By-Products of Different White Grape Varieties. Curiel-Fernández M; Bueno-Herrera M; Guadalupe Z; Ayestarán B; Pérez-Magariño S Molecules; 2023 Sep; 28(19):. PubMed ID: 37836612 [TBL] [Abstract][Full Text] [Related]
13. Fractionation and characterization of polyphenolic compounds and macromolecules in red wine by asymmetrical flow field-flow fractionation. Pascotto K; Cheynier V; Williams P; Geffroy O; Violleau F J Chromatogr A; 2020 Oct; 1629():461464. PubMed ID: 32841772 [TBL] [Abstract][Full Text] [Related]
14. Alcohol, Tannins, and Mannoprotein and their Interactions Influence the Sensory Properties of Selected Commercial Merlot Wines: A Preliminary Study. Diako C; McMahon K; Mattinson S; Evans M; Ross C J Food Sci; 2016 Aug; 81(8):S2039-48. PubMed ID: 27442722 [TBL] [Abstract][Full Text] [Related]
15. The impact of wine components on fractionation of Cu and Fe in model wine systems: Macromolecules, phenolic and sulfur compounds. Kontoudakis N; Smith M; Guo A; Smith PA; Scollary GR; Wilkes EN; Clark AC Food Res Int; 2017 Aug; 98():95-102. PubMed ID: 28610737 [TBL] [Abstract][Full Text] [Related]
16. Quantitative analysis of Bordeaux red wine precipitates by solid-state NMR: Role of tartrates and polyphenols. Prakash S; Iturmendi N; Grelard A; Moine V; Dufourc E Food Chem; 2016 May; 199():229-37. PubMed ID: 26775965 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamics of grape and wine tannin interaction with polyproline: implications for red wine astringency. McRae JM; Falconer RJ; Kennedy JA J Agric Food Chem; 2010 Dec; 58(23):12510-8. PubMed ID: 21070019 [TBL] [Abstract][Full Text] [Related]
18. The Role of Soluble Polysaccharides in Tannin-Cell Wall Interactions in Model Solutions and in Wines. Osete-Alcaraz A; Bautista-Ortín AB; Gómez-Plaza E Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31881777 [TBL] [Abstract][Full Text] [Related]
19. Effect of the addition of soluble polysaccharides from red and white grape skins on the polyphenolic composition and sensory properties of Tempranillo red wines. Manjón E; Li S; Dueñas M; García-Estévez I; Escribano-Bailón MT Food Chem; 2023 Jan; 400():134110. PubMed ID: 36096051 [TBL] [Abstract][Full Text] [Related]
20. Use of Winemaking Supplements To Modify the Composition and Sensory Properties of Shiraz Wine. Li S; Bindon K; Bastian SE; Jiranek V; Wilkinson KL J Agric Food Chem; 2017 Feb; 65(7):1353-1364. PubMed ID: 28145118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]