These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
568 related articles for article (PubMed ID: 31188587)
1. Determination of the Limit of Detection of Multiple Pesticides Utilizing Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy. Dowgiallo AM; Guenther DA J Agric Food Chem; 2019 Nov; 67(46):12642-12651. PubMed ID: 31188587 [TBL] [Abstract][Full Text] [Related]
2. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Hu B; Sun DW; Pu H; Wei Q Talanta; 2020 Sep; 217():120998. PubMed ID: 32498854 [TBL] [Abstract][Full Text] [Related]
3. Construction of pure worm-like AuAg nanochains for ultrasensitive SERS detection of pesticide residues on apple surfaces. Jiao A; Dong X; Zhang H; Xu L; Tian Y; Liu X; Chen M Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb; 209():241-247. PubMed ID: 30414572 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique. Yaseen T; Pu H; Sun DW Talanta; 2019 May; 196():537-545. PubMed ID: 30683402 [TBL] [Abstract][Full Text] [Related]
5. Screening pesticide residues on fruit peels using portable Raman spectrometer combined with adhesive tape sampling. Gong X; Tang M; Gong Z; Qiu Z; Wang D; Fan M Food Chem; 2019 Oct; 295():254-258. PubMed ID: 31174756 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice. Zhang Y; Wang Y; Liu A; Liu S Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep; 297():122721. PubMed ID: 37054572 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of polyhedral gold nanostars as surface-enhanced Raman spectroscopy substrates for measurement of thiram in peach juice. Sun L; Yu Z; Lin M Analyst; 2019 Aug; 144(16):4820-4825. PubMed ID: 31282496 [TBL] [Abstract][Full Text] [Related]
8. Facile synthesis of gold nanostars for the duplex detection of pesticide residues in grapes using SERS. Zhai K; Sun L; Nguyen THD; Lin M J Food Sci; 2024 Apr; 89(4):2512-2521. PubMed ID: 38380711 [TBL] [Abstract][Full Text] [Related]
9. Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables. Chen J; Huang M; Kong L; Lin M Carbohydr Polym; 2019 Feb; 205():596-600. PubMed ID: 30446146 [TBL] [Abstract][Full Text] [Related]
10. Using Standing Gold Nanorod Arrays as Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Detection of Carbaryl Residues in Fruit Juice and Milk. Alsammarraie FK; Lin M J Agric Food Chem; 2017 Jan; 65(3):666-674. PubMed ID: 28080039 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic understanding of nanoparticle interactions to achieve highly-ordered arrays through self-assembly for sensitive surface-enhanced Raman scattering detection of trace thiram. Lin G; Zhou X; Lijie L Food Chem; 2024 Oct; 455():139852. PubMed ID: 38823142 [TBL] [Abstract][Full Text] [Related]
12. Rapid and ultrasensitive detection of thiram and carbaryl pesticide residues in fruit juices using SERS coupled with the chemometrics technique. Adhikari S; Joshi R; Joshi R; Kim M; Jang Y; Tufa LT; Gicha BB; Lee J; Lee D; Cho BK Food Chem; 2024 Nov; 457():140486. PubMed ID: 39032478 [TBL] [Abstract][Full Text] [Related]
13. Use of graphene and gold nanorods as substrates for the detection of pesticides by surface enhanced Raman spectroscopy. Nguyen TH; Zhang Z; Mustapha A; Li H; Lin M J Agric Food Chem; 2014 Oct; 62(43):10445-51. PubMed ID: 25317673 [TBL] [Abstract][Full Text] [Related]
14. Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique. Zhang Y; Wang Z; Wu L; Pei Y; Chen P; Cui Y Analyst; 2014 Oct; 139(20):5148-54. PubMed ID: 25105174 [TBL] [Abstract][Full Text] [Related]
15. Rapid detection of thiabendazole residues in apple juice by surface-enhanced Raman scattering coupled with silver coated gold nanoparticles. Song Y; Qiu H; Huang Y; Wang X; Lai K Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123189. PubMed ID: 37506455 [TBL] [Abstract][Full Text] [Related]
16. Flexible paper-based SERS substrate strategy for rapid detection of methyl parathion on the surface of fruit. Xie J; Li L; Khan IM; Wang Z; Ma X Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 231():118104. PubMed ID: 32006913 [TBL] [Abstract][Full Text] [Related]
17. Single-atom oxide-decorated AuNPs for universal enhancement in SERS detection of pesticide residues. Zhang Q; Chen B; Ma Q; Fang Z; Li S; He X; Wang Y; Qi X; Chen Q; Cai T; Zhang L; Zou M; Wang C; Ma Q Anal Chim Acta; 2024 Nov; 1329():343192. PubMed ID: 39396282 [TBL] [Abstract][Full Text] [Related]
18. Standing gold nanorod arrays as reproducible SERS substrates for measurement of pesticides in apple juice and vegetables. Zhang Z; Yu Q; Li H; Mustapha A; Lin M J Food Sci; 2015 Feb; 80(2):N450-8. PubMed ID: 25604440 [TBL] [Abstract][Full Text] [Related]
19. Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram. Zhu J; Liu MJ; Li JJ; Li X; Zhao JW Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():586-593. PubMed ID: 28881284 [TBL] [Abstract][Full Text] [Related]
20. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs. Yaseen T; Pu H; Sun DW Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 May; 36(5):762-778. PubMed ID: 30943113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]