These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31188612)

  • 21. Biophysical investigation of the interfacial properties of cationic fluorocarbon/hydrocarbon hybrid surfactant: mimicking the lung surfactant protein C.
    Aydogan N; Uslu B; Tanaci H
    J Colloid Interface Sci; 2011 Aug; 360(1):163-74. PubMed ID: 21555131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The interaction between the outer layer of a mixed ion pair amphiphile/double-chained cationic surfactant vesicle and DNA: a Langmuir monolayer study.
    Lee J; Chang CH
    Soft Matter; 2014 Mar; 10(11):1831-9. PubMed ID: 24652187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aerosolizing Lipid Dispersions Enables Antibiotic Transport Across Mimics of the Lung Airway Surface Even in the Presence of Pre-existing Lipid Monolayers.
    Iasella SV; Stetten AZ; Corcoran TE; Garoff S; Przybycien TM; Tilton RD
    J Aerosol Med Pulm Drug Deliv; 2018 Aug; 31(4):212-220. PubMed ID: 29053080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of levofloxacin with lung surfactant at the air-water interface.
    Ortiz-Collazos S; Estrada-López ED; Pedreira AA; Picciani PHS; Oliveira ON; Pimentel AS
    Colloids Surf B Biointerfaces; 2017 Oct; 158():689-696. PubMed ID: 28778052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the in situ structural and interfacial properties of the cationic hydrophobic heteropolypeptide, KL4, in lung surfactant bilayer and monolayer models at the air-water interface: implications for pulmonary surfactant delivery.
    Mansour HM; Damodaran S; Zografi G
    Mol Pharm; 2008; 5(5):681-95. PubMed ID: 18630875
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protic ionic liquid as additive on lipase immobilization using silica sol-gel.
    de Souza RL; de Faria EL; Figueiredo RT; Freitas Ldos S; Iglesias M; Mattedi S; Zanin GM; dos Santos OA; Coutinho JA; Lima ÁS; Soares CM
    Enzyme Microb Technol; 2013 Mar; 52(3):141-50. PubMed ID: 23410924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tailoring a stable and recyclable nanobiocatalyst by immobilization of surfactant treated Burkholderia cepacia lipase on polyaniline nanofibers for biocatalytic application.
    Soni S; Dwivedee BP; Banerjee UC
    Int J Biol Macromol; 2020 Oct; 161():573-586. PubMed ID: 32512104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sea Spray Aerosols Contain the Major Component of Human Lung Surfactant.
    Van Acker E; De Rijcke M; Liu Z; Asselman J; De Schamphelaere KAC; Vanhaecke L; Janssen CR
    Environ Sci Technol; 2021 Dec; 55(23):15989-16000. PubMed ID: 34793130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immobilization of lipases on hydrophobilized zirconia nanoparticles: highly enantioselective and reusable biocatalysts.
    Chen YZ; Yang CT; Ching CB; Xu R
    Langmuir; 2008 Aug; 24(16):8877-84. PubMed ID: 18656972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA and DNA association to zwitterionic and charged monolayers at the air-liquid interface.
    Michanek A; Yanez M; Wacklin H; Hughes A; Nylander T; Sparr E
    Langmuir; 2012 Jun; 28(25):9621-33. PubMed ID: 22624628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microstructure and dynamic surface properties of surfactant protein SP-B/dipalmitoylphosphatidylcholine interfacial films spread from lipid-protein bilayers.
    Cruz A; Worthman LA; Serrano AG; Casals C; Keough KM; Pérez-Gil J
    Eur Biophys J; 2000; 29(3):204-13. PubMed ID: 10968212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The binding of an amphipathic peptide to lipid monolayers at the air/water interface is modulated by the lipid headgroup structure.
    Arouri A; Kerth A; Dathe M; Blume A
    Langmuir; 2011 Mar; 27(6):2811-8. PubMed ID: 21319763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of surfactants on lipase structure, activity, and inhibition.
    Delorme V; Dhouib R; Canaan S; Fotiadu F; Carrière F; Cavalier JF
    Pharm Res; 2011 Aug; 28(8):1831-42. PubMed ID: 21234659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Colloidal graphene oxide enhances the activity of a lipase and protects it from oxidative damage: Insights from physicochemical and molecular dynamics investigations.
    Kalji O; Sefidbakht Y; Nesterenko AM; Uskoković V; Ranaei-Siadat SO
    J Colloid Interface Sci; 2020 May; 567():285-299. PubMed ID: 32062491
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.
    Kim C; Lee J; Cho J; Oh Y; Choi YK; Choi E; Park J; Kim MJ
    J Org Chem; 2013 Mar; 78(6):2571-8. PubMed ID: 23406287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solvent dielectric effect and side chain mutation on the structural stability of Burkholderia cepacia lipase active site: a quantum mechanical/molecular mechanics study.
    Tahan A; Monajjemi M
    Acta Biotheor; 2011 Dec; 59(3-4):291-312. PubMed ID: 21710316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduced Condensing and Ordering Effects by 7-Ketocholesterol and 5β,6β-Epoxycholesterol on DPPC Monolayers.
    Telesford DM; Verreault D; Reick-Mitrisin V; Allen HC
    Langmuir; 2015 Sep; 31(36):9859-69. PubMed ID: 26322794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imidazolium-Based Lipid Analogues and Their Interaction with Phosphatidylcholine Membranes.
    Wang D; de Jong DH; Rühling A; Lesch V; Shimizu K; Wulff S; Heuer A; Glorius F; Galla HJ
    Langmuir; 2016 Dec; 32(48):12579-12592. PubMed ID: 27934518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of trace amounts of ionic surfactants on the zeta potential of DPPC liposomes.
    Sęk A; Perczyk P; Wydro P; Gruszecki WI; Szcześ A
    Chem Phys Lipids; 2021 Mar; 235():105059. PubMed ID: 33539791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ionic-surfactant-coated Burkholderia cepacia lipase as a highly active and enantioselective catalyst for the dynamic kinetic resolution of secondary alcohols.
    Kim H; Choi YK; Lee J; Lee E; Park J; Kim MJ
    Angew Chem Int Ed Engl; 2011 Nov; 50(46):10944-8. PubMed ID: 21954139
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.