These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31188818)

  • 1. Low-cost (<€5), open-source, potential alternative to commercial spectrophotometers.
    Pereira VR; Hosker BS
    PLoS Biol; 2019 Jun; 17(6):e3000321. PubMed ID: 31188818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An accurate, precise, and affordable light emitting diode spectrophotometer for drinking water and other testing with limited resources.
    Prairie MW; Frisbie SH; Rao KK; Saksri AH; Parbat S; Mitchell EJ
    PLoS One; 2020; 15(1):e0226761. PubMed ID: 31995571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water.
    Hussain I; Ahamad KU; Nath P
    Anal Chem; 2017 Jan; 89(1):767-775. PubMed ID: 27982569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automated 3D-printed smartphone platform integrated with optoelectrowetting (OEW) microfluidic chip for on-site monitoring of viable algae in water.
    Lee S; Thio SK; Park SY; Bae S
    Harmful Algae; 2019 Sep; 88():101638. PubMed ID: 31582154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of mini-spectrophotometer for determination of plasma glucose.
    Chaianantakul N; Wutthi K; Kamput N; Pramanpol N; Janphuang P; Pummara W; Phimon K; Phatthanakun R
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():670-676. PubMed ID: 29982158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone.
    Chen Y; Fu Q; Li D; Xie J; Ke D; Song Q; Tang Y; Wang H
    Anal Bioanal Chem; 2017 Nov; 409(28):6567-6574. PubMed ID: 28871402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printable and open-source modular smartphone visible spectrophotometer.
    Winters BJ; Banfield N; Dixon C; Swensen A; Holman D; Fillbrown B
    HardwareX; 2021 Oct; 10():e00232. PubMed ID: 35607665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and application of a low-cost smartphone-based turbidimeter using scattered light.
    Bayram A; Yalcin E; Demic S; Gunduz O; Solmaz ME
    Appl Opt; 2018 Jul; 57(21):5935-5940. PubMed ID: 30118016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of universal 3D-Printed smartphone spectrophotometer to develop a time-based analysis for hypochlorite.
    Vidal E; Lorenzetti AS; Garcia CD; Domini CE
    Anal Chim Acta; 2021 Mar; 1151():338249. PubMed ID: 33608080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and selective detection of Fe (III) by using a smartphone-based device as a portable detector and hydroxyl functionalized metal-organic frameworks as the fluorescence probe.
    Zhao Y; Ouyang H; Feng S; Luo Y; Shi Q; Zhu C; Chang YC; Li L; Du D; Yang H
    Anal Chim Acta; 2019 Oct; 1077():160-166. PubMed ID: 31307705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cuvette attachment for spectrophotometers].
    Garbarets BA; Prokhorchuk NV; Dylevoĭ MV
    Med Tekh; 1987; (3):55-6. PubMed ID: 3613949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics.
    Wang LJ; Chang YC; Sun R; Li L
    Biosens Bioelectron; 2017 Jan; 87():686-692. PubMed ID: 27631683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3D printed smartphone adaptor for nasolaryngoscopy.
    Thompson D; Albarki H; Lodhia C; Fitzpatrick N
    Laryngoscope Investig Otolaryngol; 2020 Feb; 5(1):31-36. PubMed ID: 32128428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A job for quantum dots: use of a smartphone and 3D-printed accessory for all-in-one excitation and imaging of photoluminescence.
    Petryayeva E; Algar WR
    Anal Bioanal Chem; 2016 Apr; 408(11):2913-25. PubMed ID: 26790875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Endockscope Using Next Generation Smartphones: "A Global Opportunity".
    Tse C; Patel RM; Yoon R; Okhunov Z; Landman J; Clayman RV
    J Endourol; 2018 Aug; 32(8):765-770. PubMed ID: 29860870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Light-Emitting Diode- (LED-) Based Absorption Sensor for Simultaneous Detection of Carbon Monoxide and Carbon Dioxide.
    Thurmond K; Loparo Z; Partridge W; Vasu SS
    Appl Spectrosc; 2016 Jun; 70(6):962-71. PubMed ID: 27091903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low volume 3D-printed temperature-controllable cuvette for UV visible spectroscopy.
    Pisaruka J; Dymond MK
    Anal Biochem; 2016 Oct; 510():52-55. PubMed ID: 27443958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Teaching, learning, and using spectroscopy with commercial, off-the-shelf technology.
    Scheeline A
    Appl Spectrosc; 2010 Sep; 64(9):256A-268A. PubMed ID: 20828431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smartphone spectrometer for colorimetric biosensing.
    Wang Y; Liu X; Chen P; Tran NT; Zhang J; Chia WS; Boujday S; Liedberg B
    Analyst; 2016 May; 141(11):3233-8. PubMed ID: 27163736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smartphone adapter time trial analysis: A low-cost, time-efficient method to disseminate quality photomicrographs at the microscope.
    DaCunha M; Buntinx T; Hinds B
    J Cutan Pathol; 2022 Mar; 49(3):215-219. PubMed ID: 34427943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.