These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31189071)

  • 1. Comparison of Predictions Between an EMG-Assisted Approach and Two Optimization-Driven Approaches for Lumbar Spine Loading During Walking With Backpack Loads.
    Li SSW; Chow DHK
    Hum Factors; 2020 Jun; 62(4):565-577. PubMed ID: 31189071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EMG-based lumbosacral joint compression force prediction using a support vector machine.
    Li SSW; Chu CCF; Chow DHK
    Med Eng Phys; 2019 Dec; 74():115-120. PubMed ID: 31537499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified electromyography-assisted optimization approach for predicting lumbar spine loading while walking with backpack loads.
    Li SS; Chow DH
    Proc Inst Mech Eng H; 2020 May; 234(5):527-533. PubMed ID: 32053045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of backpack load on critical changes of trunk muscle activation and lumbar spine loading during walking.
    Li SSW; Chow DHK
    Ergonomics; 2018 Apr; 61(4):553-565. PubMed ID: 28791922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes of lumbosacral joint compression force profile when walking caused by backpack loads.
    Li SSW; Zheng YP; Chow DHK
    Hum Mov Sci; 2019 Aug; 66():164-172. PubMed ID: 31029838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax-pelvis orientation.
    Ezquerro F; Simón A; Prado M; Pérez A
    Med Eng Phys; 2004 Jan; 26(1):11-22. PubMed ID: 14644594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low back three-dimensional joint forces, kinematics, and kinetics during walking.
    Callaghan JP; Patla AE; McGill SM
    Clin Biomech (Bristol, Avon); 1999 Mar; 14(3):203-16. PubMed ID: 10619108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative ability of EMG, optimization, and hybrid modelling approaches to predict trunk muscle forces and lumbar spine loading during dynamic sagittal plane lifting.
    Gagnon D; Larivière C; Loisel P
    Clin Biomech (Bristol, Avon); 2001 Jun; 16(5):359-72. PubMed ID: 11390042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved multi-joint EMG-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine.
    Gagnon D; Arjmand N; Plamondon A; Shirazi-Adl A; Larivière C
    J Biomech; 2011 May; 44(8):1521-9. PubMed ID: 21439569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of varying backpack loads on peak forces in the lumbosacral spine during walking.
    Goh JH; Thambyah A; Bose K
    Clin Biomech (Bristol, Avon); 1998; 13(1 Suppl 1):S26-S31. PubMed ID: 11430787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches.
    Mohammadi Y; Arjmand N; Shirazi-Adl A
    Med Eng Phys; 2015 Aug; 37(8):792-800. PubMed ID: 26117333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach.
    Cholewicki J; McGill SM; Norman RW
    J Biomech; 1995 Mar; 28(3):321-31. PubMed ID: 7730390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loading of the lumbar spine during backpack carriage.
    Wettenschwiler PD; Lorenzetti S; Ferguson SJ; Stämpfli R; Aiyangar AK; Rossi RM; Annaheim S
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):558-565. PubMed ID: 27873535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variations of handheld loads increase the range of motion of the lumbar spine without compromising local dynamic stability during walking.
    Gsell KY; Beaudette SM; Capcap IM; Brown SHM
    Gait Posture; 2018 Oct; 66():101-106. PubMed ID: 30172215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of backpacks on the lumbar spine in children: a standing magnetic resonance imaging study.
    Neuschwander TB; Cutrone J; Macias BR; Cutrone S; Murthy G; Chambers H; Hargens AR
    Spine (Phila Pa 1976); 2010 Jan; 35(1):83-8. PubMed ID: 20023607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method to study lumbar spine response to axial compression during magnetic resonance imaging: technical note.
    Wisleder D; Werner SL; Kraemer WJ; Fleck SJ; Zatsiorsky VM
    Spine (Phila Pa 1976); 2001 Sep; 26(18):E416-20. PubMed ID: 11547212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is there a low-back cost to hip-centric exercise? Quantifying the lumbar spine joint compression and shear forces during movements used to overload the hips.
    Frost DM; Beach T; Fenwick C; Callaghan J; McGill S
    J Sports Sci; 2012 May; 30(9):859-70. PubMed ID: 22468799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A backpack load sharing model to evaluate lumbar and hip joint contact forces during shoulder borne and hip belt assisted load carriage.
    Sturdy JT; Sessoms PH; Silverman AK
    Appl Ergon; 2021 Jan; 90():103277. PubMed ID: 33011587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low back loads while walking and carrying: comparing the load carried in one hand or in both hands.
    McGill SM; Marshall L; Andersen J
    Ergonomics; 2013; 56(2):293-302. PubMed ID: 23384188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.