BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31189107)

  • 21. Identification of a novel putative mitochondrial protein FAM210B associated with erythroid differentiation.
    Kondo A; Fujiwara T; Okitsu Y; Fukuhara N; Onishi Y; Nakamura Y; Sawada K; Harigae H
    Int J Hematol; 2016 Apr; 103(4):387-95. PubMed ID: 26968549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus.
    Byrska-Bishop M; VanDorn D; Campbell AE; Betensky M; Arca PR; Yao Y; Gadue P; Costa FF; Nemiroff RL; Blobel GA; French DL; Hardison RC; Weiss MJ; Chou ST
    J Clin Invest; 2015 Mar; 125(3):993-1005. PubMed ID: 25621499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FUSE binding protein 1 (FUBP1) expression is upregulated by T-cell acute lymphocytic leukemia protein 1 (TAL1) and required for efficient erythroid differentiation.
    Steiner M; Schneider L; Yillah J; Gerlach K; Kuvardina ON; Meyer A; Maring A; Bonig H; Seifried E; Zörnig M; Lausen J
    PLoS One; 2019; 14(1):e0210515. PubMed ID: 30653565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Blood group phenotypes resulting from mutations in erythroid transcription factors.
    Singleton BK; Frayne J; Anstee DJ
    Curr Opin Hematol; 2012 Nov; 19(6):486-93. PubMed ID: 22954727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mbd2-CP2c loop drives adult-type globin gene expression and definitive erythropoiesis.
    Kim MY; Kim JS; Son SH; Lim CS; Eum HY; Ha DH; Park MA; Baek EJ; Ryu BY; Kang HC; Uversky VN; Kim CG
    Nucleic Acids Res; 2018 Jun; 46(10):4933-4949. PubMed ID: 29547954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linking differential chromatin loops to transcriptional decisions.
    Apostolou E; Thanos D
    Mol Cell; 2008 Feb; 29(2):154-6. PubMed ID: 18243110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. KLF1 directly coordinates almost all aspects of terminal erythroid differentiation.
    Tallack MR; Perkins AC
    IUBMB Life; 2010 Dec; 62(12):886-90. PubMed ID: 21190291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells.
    Steiner LA; Schulz V; Makismova Y; Lezon-Geyda K; Gallagher PG
    PLoS One; 2016; 11(5):e0155378. PubMed ID: 27219007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Murine erythropoietic impairment induced by paclitaxel: interactions of GATA-1 and erythroid Krüppel-like transcription factors, apoptotic related proteins and erythropoietin receptor.
    Aguirre MV; Todaro JS; Juaristi JA; Brandan NC
    Eur J Pharmacol; 2010 Jun; 636(1-3):42-51. PubMed ID: 20353770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of GATA1 levels in erythropoiesis.
    Gutiérrez L; Caballero N; Fernández-Calleja L; Karkoulia E; Strouboulis J
    IUBMB Life; 2020 Jan; 72(1):89-105. PubMed ID: 31769197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of transcription factors KLF1 and GATA1 on red blood cell antigen expression: a review.
    Lopez GH; Sarri ME; Flower RL; Hyland CA
    Immunohematology; 2024 Apr; 40(1):1-9. PubMed ID: 38739025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications.
    Hattangadi SM; Wong P; Zhang L; Flygare J; Lodish HF
    Blood; 2011 Dec; 118(24):6258-68. PubMed ID: 21998215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulatory association of long noncoding RNAs and chromatin accessibility facilitates erythroid differentiation.
    Ren Y; Zhu J; Han Y; Li P; Wu J; Qu H; Zhang Z; Fang X
    Blood Adv; 2021 Dec; 5(23):5396-5409. PubMed ID: 34644394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defective erythropoiesis caused by mutations of the thyroid hormone receptor α gene.
    Park S; Han CR; Park JW; Zhao L; Zhu X; Willingham M; Bodine DM; Cheng SY
    PLoS Genet; 2017 Sep; 13(9):e1006991. PubMed ID: 28910278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Establishment of erythroleukemic GAK14 cells and characterization of GATA1 N-terminal domain.
    Mukai HY; Suzuki M; Nagano M; Ohmori S; Otsuki A; Tsuchida K; Moriguchi T; Ohneda K; Shimizu R; Ohneda O; Yamamoto M
    Genes Cells; 2013 Oct; 18(10):886-98. PubMed ID: 23890289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fas-antisense long noncoding RNA is differentially expressed during maturation of human erythrocytes and confers resistance to Fas-mediated cell death.
    Villamizar O; Chambers CB; Mo YY; Torry DS; Hofstrand R; Riberdy JM; Persons DA; Wilber A
    Blood Cells Mol Dis; 2016 May; 58():57-66. PubMed ID: 27067490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Orchestration of late events in erythropoiesis by KLF1/EKLF.
    Gnanapragasam MN; Bieker JJ
    Curr Opin Hematol; 2017 May; 24(3):183-190. PubMed ID: 28157724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterochromatin rewiring and domain disruption-mediated chromatin compaction during erythropoiesis.
    Li D; Wu F; Zhou S; Huang XJ; Lee HY
    Nat Struct Mol Biol; 2023 Apr; 30(4):463-474. PubMed ID: 36914797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Erythropoiesis: a paradigm for the role of caspases in cell death and differentiation].
    Ribeil JA; Zermati Y; Vandekerckhove J; Dussiot M; Kersual J; Hermine O
    J Soc Biol; 2005; 199(3):219-31. PubMed ID: 16471262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Failure of terminal erythroid differentiation in EKLF-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2.
    Pilon AM; Arcasoy MO; Dressman HK; Vayda SE; Maksimova YD; Sangerman JI; Gallagher PG; Bodine DM
    Mol Cell Biol; 2008 Dec; 28(24):7394-401. PubMed ID: 18852285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.