BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31189527)

  • 1. CRISPR genome editing of murine hematopoietic stem cells to create
    Rajan SS; Li L; Kweh MF; Kunkalla K; Amin AD; Agarwal NK; Vega F; Schatz JH
    Blood Adv; 2019 Jun; 3(12):1788-1794. PubMed ID: 31189527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with the variant RNF213-, ATIC- and TPM3-ALK fusions is characterized by copy number gain of the rearranged ALK gene.
    van der Krogt JA; Bempt MV; Ferreiro JF; Mentens N; Jacobs K; Pluys U; Doms K; Geerdens E; Uyttebroeck A; Pierre P; Michaux L; Devos T; Vandenberghe P; Tousseyn T; Cools J; Wlodarska I
    Haematologica; 2017 Sep; 102(9):1605-1616. PubMed ID: 28659337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1.
    Schiroli G; Ferrari S; Conway A; Jacob A; Capo V; Albano L; Plati T; Castiello MC; Sanvito F; Gennery AR; Bovolenta C; Palchaudhuri R; Scadden DT; Holmes MC; Villa A; Sitia G; Lombardo A; Genovese P; Naldini L
    Sci Transl Med; 2017 Oct; 9(411):. PubMed ID: 29021165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of a TRAF1-ALK fusion in an anaplastic large cell lymphoma patient with chemotherapy and ALK inhibitor-resistant disease.
    Lawrence K; Berry B; Handshoe J; Hout D; Mazzola R; Morris SW; Saltman DL
    BMC Res Notes; 2015 Jul; 8():308. PubMed ID: 26187744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Overexpression of NPM-ALK induces different types of malignant lymphomas in IL-9 transgenic mice].
    Merz H; Lange K; Nadrowitz R; Uckert W; Blankenstein T; Feller AC
    Verh Dtsch Ges Pathol; 2003; 87():224-31. PubMed ID: 16888916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene-ectomy: gene ablation with CRISPR/Cas9 in human hematopoietic cells.
    Calero-Garcia M; Gaspar HB
    Cell Stem Cell; 2014 Nov; 15(5):529-30. PubMed ID: 25517457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-GE: A Convenient Software Toolkit for CRISPR-Based Genome Editing.
    Xie X; Ma X; Zhu Q; Zeng D; Li G; Liu YG
    Mol Plant; 2017 Sep; 10(9):1246-1249. PubMed ID: 28624544
    [No Abstract]   [Full Text] [Related]  

  • 9. Genome Editing in Retinal Diseases using CRISPR Technology.
    Yiu G
    Ophthalmol Retina; 2018 Jan; 2(1):1-3. PubMed ID: 31047294
    [No Abstract]   [Full Text] [Related]  

  • 10. Off- and on-target effects of genome editing in mouse embryos.
    Ayabe S; Nakashima K; Yoshiki A
    J Reprod Dev; 2019 Feb; 65(1):1-5. PubMed ID: 30518723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery.
    Ahmad G; Amiji M
    Drug Discov Today; 2018 Mar; 23(3):519-533. PubMed ID: 29326075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of CRISPR systems in respiratory health: Entering a new 'red pen' era in genome editing.
    Moses C; Kaur P
    Respirology; 2019 Jul; 24(7):628-637. PubMed ID: 30883991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Gene Editing Outcomes in Human Hematopoietic Stem and Progenitor Cells by Temporal Control of DNA Repair.
    Lomova A; Clark DN; Campo-Fernandez B; Flores-Bjurström C; Kaufman ML; Fitz-Gibbon S; Wang X; Miyahira EY; Brown D; DeWitt MA; Corn JE; Hollis RP; Romero Z; Kohn DB
    Stem Cells; 2019 Feb; 37(2):284-294. PubMed ID: 30372555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice.
    Meng X; Hu X; Liu Q; Song X; Gao C; Li J; Wang K
    Sci China Life Sci; 2018 Jan; 61(1):122-125. PubMed ID: 29285711
    [No Abstract]   [Full Text] [Related]  

  • 15. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing.
    Wen J; Tao W; Hao S; Zu Y
    J Hematol Oncol; 2017 Jun; 10(1):119. PubMed ID: 28610635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cpf1: A New Tool for Plant Genome Editing.
    Zaidi SS; Mahfouz MM; Mansoor S
    Trends Plant Sci; 2017 Jul; 22(7):550-553. PubMed ID: 28532598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma.
    Lamant L; Gascoyne RD; Duplantier MM; Armstrong F; Raghab A; Chhanabhai M; Rajcan-Separovic E; Raghab J; Delsol G; Espinos E
    Genes Chromosomes Cancer; 2003 Aug; 37(4):427-32. PubMed ID: 12800156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene Editing in 3D Cultured Nephron Progenitor Cell Lines.
    Li Z; Araoka T; Belmonte JCI
    Methods Mol Biol; 2019; 1926():151-159. PubMed ID: 30742270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Editing of Human Hematopoietic Stem and Progenitor Cells: Promise and Potential Hurdles.
    Yu KR; Natanson H; Dunbar CE
    Hum Gene Ther; 2016 Oct; 27(10):729-740. PubMed ID: 27483988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.