These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 31189531)

  • 1. Loss of EZH2 Reprograms BCAA Metabolism to Drive Leukemic Transformation.
    Gu Z; Liu Y; Cai F; Patrick M; Zmajkovic J; Cao H; Zhang Y; Tasdogan A; Chen M; Qi L; Liu X; Li K; Lyu J; Dickerson KE; Chen W; Ni M; Merritt ME; Morrison SJ; Skoda RC; DeBerardinis RJ; Xu J
    Cancer Discov; 2019 Sep; 9(9):1228-1247. PubMed ID: 31189531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative Epigenetic Remodeling by TET2 Loss and NRAS Mutation Drives Myeloid Transformation and MEK Inhibitor Sensitivity.
    Kunimoto H; Meydan C; Nazir A; Whitfield J; Shank K; Rapaport F; Maher R; Pronier E; Meyer SC; Garrett-Bakelman FE; Tallman M; Melnick A; Levine RL; Shih AH
    Cancer Cell; 2018 Jan; 33(1):44-59.e8. PubMed ID: 29275866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergence of oncogenic cooperation at single-cell and single-gene levels drives leukemic transformation.
    Liu Y; Gu Z; Cao H; Kaphle P; Lyu J; Zhang Y; Hu W; Chung SS; Dickerson KE; Xu J
    Nat Commun; 2021 Nov; 12(1):6323. PubMed ID: 34732703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function.
    Zhang L; Han J
    Biochem Biophys Res Commun; 2017 Apr; 486(2):224-231. PubMed ID: 28235484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia.
    Hattori A; Tsunoda M; Konuma T; Kobayashi M; Nagy T; Glushka J; Tayyari F; McSkimming D; Kannan N; Tojo A; Edison AS; Ito T
    Nature; 2017 May; 545(7655):500-504. PubMed ID: 28514443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An "EZ" Epigenetic Road to Leukemia Stem Cell Metabolic Reprogramming?
    Li M; Melnick AM
    Cancer Discov; 2019 Sep; 9(9):1158-1160. PubMed ID: 31481404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EZH2 in Myeloid Malignancies.
    Rinke J; Chase A; Cross NCP; Hochhaus A; Ernst T
    Cells; 2020 Jul; 9(7):. PubMed ID: 32650416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human acute leukemia uses branched-chain amino acid catabolism to maintain stemness through regulating PRC2 function.
    Kikushige Y; Miyamoto T; Kochi Y; Semba Y; Ohishi M; Irifune H; Hatakeyama K; Kunisaki Y; Sugio T; Sakoda T; Miyawaki K; Kato K; Soga T; Akashi K
    Blood Adv; 2023 Jul; 7(14):3592-3603. PubMed ID: 36044390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double sword role of EZH2 in leukemia.
    Safaei S; Baradaran B; Hagh MF; Alivand MR; Talebi M; Gharibi T; Solali S
    Biomed Pharmacother; 2018 Feb; 98():626-635. PubMed ID: 29289837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p53-/- synergizes with enhanced NrasG12D signaling to transform megakaryocyte-erythroid progenitors in acute myeloid leukemia.
    Zhang J; Kong G; Rajagopalan A; Lu L; Song J; Hussaini M; Zhang X; Ranheim EA; Liu Y; Wang J; Gao X; Chang YI; Johnson KD; Zhou Y; Yang D; Bhatnagar B; Lucas DM; Bresnick EH; Zhong X; Padron E; Zhang J
    Blood; 2017 Jan; 129(3):358-370. PubMed ID: 27815262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defect of branched-chain amino acid metabolism promotes the development of Alzheimer's disease by targeting the mTOR signaling.
    Li H; Ye D; Xie W; Hua F; Yang Y; Wu J; Gu A; Ren Y; Mao K
    Biosci Rep; 2018 Aug; 38(4):. PubMed ID: 29802157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Epigenetic Regulator EZH2 Instructs CD4 T Cell Response to Acute Viral Infection via Coupling of Cell Expansion and Metabolic Fitness.
    Li R; Pan Z; Wu J; Yue S; Lin Y; Yang Y; Li Z; Hu L; Tang J; Shan L; Tian Q; Jiang P; Wei P; Ye L; Liu P; Chen X
    J Virol; 2020 Nov; 94(24):. PubMed ID: 32999031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. METTL16 drives leukemogenesis and leukemia stem cell self-renewal by reprogramming BCAA metabolism.
    Han L; Dong L; Leung K; Zhao Z; Li Y; Gao L; Chen Z; Xue J; Qing Y; Li W; Pokharel SP; Gao M; Chen M; Shen C; Tan B; Small A; Wang K; Zhang Z; Qin X; Yang L; Wunderlich M; Zhang B; Mulloy JC; Marcucci G; Chen CW; Wei M; Su R; Chen J; Deng X
    Cell Stem Cell; 2023 Jan; 30(1):52-68.e13. PubMed ID: 36608679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EZH2-Mediated Primary Cilium Deconstruction Drives Metastatic Melanoma Formation.
    Zingg D; Debbache J; Peña-Hernández R; Antunes AT; Schaefer SM; Cheng PF; Zimmerli D; Haeusel J; Calçada RR; Tuncer E; Zhang Y; Bossart R; Wong KK; Basler K; Dummer R; Santoro R; Levesque MP; Sommer L
    Cancer Cell; 2018 Jul; 34(1):69-84.e14. PubMed ID: 30008323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Branched-chain amino acid metabolism in cancer.
    Ananieva EA; Wilkinson AC
    Curr Opin Clin Nutr Metab Care; 2018 Jan; 21(1):64-70. PubMed ID: 29211698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Context-Dependent Epigenetic Regulation of Nuclear Factor of Activated T Cells 1 in Pancreatic Plasticity.
    Chen NM; Neesse A; Dyck ML; Steuber B; Koenig AO; Lubeseder-Martellato C; Winter T; Forster T; Bohnenberger H; Kitz J; Reuter-Jessen K; Griesmann H; Gaedcke J; Grade M; Zhang JS; Tsai WC; Siveke J; Schildhaus HU; Ströbel P; Johnsen SA; Ellenrieder V; Hessmann E
    Gastroenterology; 2017 May; 152(6):1507-1520.e15. PubMed ID: 28188746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoformulation of EPZ011989 Attenuates EZH2-c-Myb Epigenetic Interaction by Proteasomal Degradation in Acute Myeloid Leukemia.
    Kaundal B; Srivastava AK; Dev A; Mohanbhai SJ; Karmakar S; Roy Choudhury S
    Mol Pharm; 2020 Feb; 17(2):604-621. PubMed ID: 31904978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis.
    Shimizu T; Kubovcakova L; Nienhold R; Zmajkovic J; Meyer SC; Hao-Shen H; Geier F; Dirnhofer S; Guglielmelli P; Vannucchi AM; Feenstra JD; Kralovics R; Orkin SH; Skoda RC
    J Exp Med; 2016 Jul; 213(8):1479-96. PubMed ID: 27401344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Basis and Clinical Application of Growth-Factor-Independent In Vitro Myeloid Colony Formation in Chronic Myelomonocytic Leukemia.
    Geissler K; Jäger E; Barna A; Gurbisz M; Graf T; Graf E; Nösslinger T; Pfeilstöcker M; Machherndl-Spandl S; Stauder R; Zebisch A; Sill H; Öhler L; Kusec R; Hörmann G; Valent P
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32842710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PTEN Is Fundamental for Elimination of Leukemia Stem Cells Mediated by GSK126 Targeting EZH2 in Chronic Myelogenous Leukemia.
    Zhou J; Nie D; Li J; Du X; Lu Y; Li Y; Liu C; Dai W; Wang Y; Jin Y; Pan J
    Clin Cancer Res; 2018 Jan; 24(1):145-157. PubMed ID: 29070525
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.