These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 3118962)
1. Malate-citrate cycle during glycolysis and glutaminolysis in Ehrlich ascites tumor cells. Pérez-Rodríguez J; Sánchez-Jiménez F; Márquez FJ; Medina MA; Quesada AR; Núñez de Castro I Biochimie; 1987 May; 69(5):469-74. PubMed ID: 3118962 [TBL] [Abstract][Full Text] [Related]
2. Evidence for the occurrence of the malate-citrate shuttle in intact Ehrlich ascites tumor cells. Eboli ML; Galeotti T Biochim Biophys Acta; 1981 Nov; 638(1):75-9. PubMed ID: 7295712 [TBL] [Abstract][Full Text] [Related]
3. The function of redox shuttles during aerobic glycolysis in two strains of Ehrlich ascites tumor cells. Sánchez-Jiménez F; Martínez P; Núñez de Castro I; Olavarría JS Biochimie; 1985 Feb; 67(2):259-64. PubMed ID: 4005310 [TBL] [Abstract][Full Text] [Related]
4. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells. Greenhouse WV; Lehninger AL Cancer Res; 1977 Nov; 37(11):4173-81. PubMed ID: 198130 [TBL] [Abstract][Full Text] [Related]
5. Possibility for the transfer of reducing equivalents from the cytosol to the mitochondrial compartment in Ehrlich ascites tumor cells by the malate-aspartate shuttle. Kovacević Z Eur J Biochem; 1972 Feb; 25(2):372-8. PubMed ID: 5039842 [No Abstract] [Full Text] [Related]
6. Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells. Grivell AR; Korpelainen EI; Williams CJ; Berry MN Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):665-71. PubMed ID: 7654209 [TBL] [Abstract][Full Text] [Related]
7. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. Moreadith RW; Lehninger AL J Biol Chem; 1984 May; 259(10):6215-21. PubMed ID: 6144677 [TBL] [Abstract][Full Text] [Related]
8. Oxidation of pyruvate, malate, citrate, and cytosolic reducing equivalents by AS-30D hepatoma mitochondria. Dietzen DJ; Davis EJ Arch Biochem Biophys; 1993 Aug; 305(1):91-102. PubMed ID: 8342959 [TBL] [Abstract][Full Text] [Related]
9. Quantitative evaluation of the activity of the malate-aspartate shuttle in Ehrlich ascites tumor cells. Chiaretti B; Casciaro A; Minotti G; Eboli ML; Galeotti T Cancer Res; 1979 Jun; 39(6 Pt 1):2195-9. PubMed ID: 221103 [No Abstract] [Full Text] [Related]
10. Evidence for the oxidation of glycolytic NADH by the malate-aspartate shuttle in Ehrlich ascites tumor cells. López-Alarcón L; Eboli ML; De Liberali E; Palombini G; Galeotti T Arch Biochem Biophys; 1979 Feb; 192(2):391-5. PubMed ID: 219778 [No Abstract] [Full Text] [Related]
11. The role of malic enzyme in the malate dependent biosynthesis of progesterone in the mitochondrial fraction of human term placenta. Swierczyński J; Klimek J; Zelewski L J Steroid Biochem; 1985 Mar; 22(3):415-8. PubMed ID: 3990291 [TBL] [Abstract][Full Text] [Related]
12. Occurrence of the malate-aspartate shuttle in various tumor types. Greenhouse WV; Lehninger AL Cancer Res; 1976 Apr; 36(4):1392-6. PubMed ID: 177206 [TBL] [Abstract][Full Text] [Related]
13. Glycolysis and glutaminolysis in perifused Ehrlich ascites tumour cells. Segura JA; Medina MA; Alonso FJ; Sanchez-Jimenez F; Núñez de Castro I Cell Biochem Funct; 1989 Jan; 7(1):7-10. PubMed ID: 2752538 [TBL] [Abstract][Full Text] [Related]
14. Glutamine and glucose as energy substrates for Ehrlich ascites tumour cells. Medina MA; Sánchez-Jiménez F; Márquez FJ; Pérez-Rodríguez J; Quesada AR; Núñez de Castro I Biochem Int; 1988 Feb; 16(2):339-47. PubMed ID: 3365266 [TBL] [Abstract][Full Text] [Related]
16. Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes. McKenna MC; Tildon JT; Stevenson JH; Huang X; Kingwell KG Neurochem Res; 1995 Dec; 20(12):1491-501. PubMed ID: 8789613 [TBL] [Abstract][Full Text] [Related]
17. Glycolytic, glutaminolytic and pentose-phosphate pathways in promyelocytic HL60 and DMSO-differentiated HL60 cells. Ahmed N; Williams JF; Weidemann MJ Biochem Mol Biol Int; 1993 Apr; 29(6):1055-67. PubMed ID: 8330014 [TBL] [Abstract][Full Text] [Related]
18. The cardioprotective effect of sildenafil is mediated by the activation of malate dehydrogenase and an increase in the malate-aspartate shuttle in cardiomyocytes. Gevi F; Campolo F; Naro F; Zolla L Biochem Pharmacol; 2017 Mar; 127():60-70. PubMed ID: 28017777 [TBL] [Abstract][Full Text] [Related]
19. Role of acetoin on the regulation of intermediate metabolism of Ehrlich ascites tumor mitochondria: its contribution to membrane cholesterol enrichment modifying passive proton permeability. Baggetto LG; Testa-Parussini R Arch Biochem Biophys; 1990 Dec; 283(2):241-8. PubMed ID: 2275543 [TBL] [Abstract][Full Text] [Related]
20. Citrate transport in guinea pig heart mitochondria. Robinson BH; Oei J Can J Biochem; 1975 May; 53(5):643-7. PubMed ID: 1139403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]