BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 31189708)

  • 1. Influenza Virus with Increased pH of Hemagglutinin Activation Has Improved Replication in Cell Culture but at the Cost of Infectivity in Human Airway Epithelium.
    Singanayagam A; Zambon M; Barclay WS
    J Virol; 2019 Sep; 93(17):. PubMed ID: 31189708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemagglutinin Stability Regulates H1N1 Influenza Virus Replication and Pathogenicity in Mice by Modulating Type I Interferon Responses in Dendritic Cells.
    Russier M; Yang G; Briard B; Meliopoulos V; Cherry S; Kanneganti TD; Schultz-Cherry S; Vogel P; Russell CJ
    J Virol; 2020 Jan; 94(3):. PubMed ID: 31694942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HA-Dependent Tropism of H5N1 and H7N9 Influenza Viruses to Human Endothelial Cells Is Determined by Reduced Stability of the HA, Which Allows the Virus To Cope with Inefficient Endosomal Acidification and Constitutively Expressed IFITM3.
    Hensen L; Matrosovich T; Roth K; Klenk HD; Matrosovich M
    J Virol; 2019 Dec; 94(1):. PubMed ID: 31597765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs.
    Gerlach T; Hensen L; Matrosovich T; Bergmann J; Winkler M; Peteranderl C; Klenk HD; Weber F; Herold S; Pöhlmann S; Matrosovich M
    J Virol; 2017 Jun; 91(11):. PubMed ID: 28356532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemagglutinin Cleavability, Acid Stability, and Temperature Dependence Optimize Influenza B Virus for Replication in Human Airways.
    Laporte M; Stevaert A; Raeymaekers V; Boogaerts T; Nehlmeier I; Chiu W; Benkheil M; Vanaudenaerde B; Pöhlmann S; Naesens L
    J Virol; 2019 Dec; 94(1):. PubMed ID: 31597759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity.
    Wang W; DeFeo CJ; Alvarado-Facundo E; Vassell R; Weiss CD
    J Virol; 2015 Oct; 89(20):10602-11. PubMed ID: 26269180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-Linked Glycan Sites on the Influenza A Virus Neuraminidase Head Domain Are Required for Efficient Viral Incorporation and Replication.
    Östbye H; Gao J; Martinez MR; Wang H; de Gier JW; Daniels R
    J Virol; 2020 Sep; 94(19):. PubMed ID: 32699088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Small Molecule Targeting the Hemagglutinin Stalk of Influenza Viruses.
    Kim JI; Lee S; Lee GY; Park S; Bae JY; Heo J; Kim HY; Woo SH; Lee HU; Ahn CA; Bang HJ; Ju HS; Ok K; Byun Y; Cho DJ; Shin JS; Kim DY; Park MS; Park MS
    J Virol; 2019 Sep; 93(17):. PubMed ID: 31167918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influenza Virus Overcomes Cellular Blocks To Productively Replicate, Impacting Macrophage Function.
    Marvin SA; Russier M; Huerta CT; Russell CJ; Schultz-Cherry S
    J Virol; 2017 Jan; 91(2):. PubMed ID: 27807237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The matrix gene segment destabilizes the acid and thermal stability of the hemagglutinin of pandemic live attenuated influenza virus vaccines.
    O'Donnell CD; Vogel L; Matsuoka Y; Jin H; Subbarao K
    J Virol; 2014 Nov; 88(21):12374-84. PubMed ID: 25122789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility.
    Shelton H; Roberts KL; Molesti E; Temperton N; Barclay WS
    J Gen Virol; 2013 Jun; 94(Pt 6):1220-1229. PubMed ID: 23486663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of H5N1 Influenza Virus Quasispecies with Adaptive Hemagglutinin Mutations from Single-Virus Infections of Human Airway Cells.
    Watanabe Y; Arai Y; Kawashita N; Ibrahim MS; Elgendy EM; Daidoji T; Kajikawa J; Hiramatsu H; Sriwilaijaroen N; Ono T; Takagi T; Takahashi K; Shioda T; Matsumoto K; Suzuki Y; Nakaya T
    J Virol; 2018 Jun; 92(11):. PubMed ID: 29563293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in Influenza A Virus Neuraminidase and Hemagglutinin Confer Resistance against a Broadly Neutralizing Hemagglutinin Stem Antibody.
    Prachanronarong KL; Canale AS; Liu P; Somasundaran M; Hou S; Poh YP; Han T; Zhu Q; Renzette N; Zeldovich KB; Kowalik TF; Kurt-Yilmaz N; Jensen JD; Bolon DNA; Marasco WA; Finberg RW; Schiffer CA; Wang JP
    J Virol; 2019 Jan; 93(2):. PubMed ID: 30381484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pandemic Swine H1N1 Influenza Viruses with Almost Undetectable Neuraminidase Activity Are Not Transmitted via Aerosols in Ferrets and Are Inhibited by Human Mucus but Not Swine Mucus.
    Zanin M; Marathe B; Wong SS; Yoon SW; Collin E; Oshansky C; Jones J; Hause B; Webby R
    J Virol; 2015 Jun; 89(11):5935-48. PubMed ID: 25810540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single amino acid in the HA of pH1N1 2009 influenza virus affects cell tropism in human airway epithelium, but not transmission in ferrets.
    van Doremalen N; Shelton H; Roberts KL; Jones IM; Pickles RJ; Thompson CI; Barclay WS
    PLoS One; 2011; 6(10):e25755. PubMed ID: 21998692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of Neuraminidase Activity Exacerbates Disease in 2009 Pandemic Influenza Virus-Infected Mice.
    Ranadheera C; Hagan MW; Leung A; Collignon B; Cutts T; Theriault S; Embury-Hyatt C; Kobasa D
    J Virol; 2016 Nov; 90(21):9931-9941. PubMed ID: 27558428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An I436N substitution confers resistance of influenza A(H1N1)pdm09 viruses to multiple neuraminidase inhibitors without affecting viral fitness.
    Kwon JJ; Choi WS; Jeong JH; Kim EH; Lee OJ; Yoon SW; Hwang J; Webby RJ; Govorkova EA; Choi YK; Baek YH; Song MS
    J Gen Virol; 2018 Mar; 99(3):292-302. PubMed ID: 29493493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular requirements for a pandemic influenza virus: An acid-stable hemagglutinin protein.
    Russier M; Yang G; Rehg JE; Wong SS; Mostafa HH; Fabrizio TP; Barman S; Krauss S; Webster RG; Webby RJ; Russell CJ
    Proc Natl Acad Sci U S A; 2016 Feb; 113(6):1636-41. PubMed ID: 26811446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuraminidase Activity and Resistance of 2009 Pandemic H1N1 Influenza Virus to Antiviral Activity in Bronchoalveolar Fluid.
    Ruangrung K; Suptawiwat O; Maneechotesuwan K; Boonarkart C; Chakritbudsabong W; Assawabhumi J; Bhattarakosol P; Uiprasertkul M; Puthavathana P; Wiriyarat W; Jongkaewwattana A; Auewarakul P
    J Virol; 2016 May; 90(9):4637-4646. PubMed ID: 26912622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemagglutinins of Avian Influenza Viruses Are Proteolytically Activated by TMPRSS2 in Human and Murine Airway Cells.
    Bestle D; Limburg H; Kruhl D; Harbig A; Stein DA; Moulton H; Matrosovich M; Abdelwhab EM; Stech J; Böttcher-Friebertshäuser E
    J Virol; 2021 Sep; 95(20):e0090621. PubMed ID: 34319155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.