These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 31190320)
21. Relationship between secondary metabolites and insect loads in cabbage with different leaf shapes and positions. Rasool SG; Abdullah M; Li D; Yanping L Phytochem Anal; 2024 Oct; 35(7):1620-1632. PubMed ID: 38923178 [TBL] [Abstract][Full Text] [Related]
23. Variation of glucosinolates in vegetable crops of Brassica oleracea. Kushad MM; Brown AF; Kurilich AC; Juvik JA; Klein BP; Wallig MA; Jeffery EH J Agric Food Chem; 1999 Apr; 47(4):1541-8. PubMed ID: 10564014 [TBL] [Abstract][Full Text] [Related]
24. Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering. Qian H; Sun B; Miao H; Cai C; Xu C; Wang Q Food Chem; 2015 Feb; 168():321-6. PubMed ID: 25172716 [TBL] [Abstract][Full Text] [Related]
25. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. Sønderby IE; Hansen BG; Bjarnholt N; Ticconi C; Halkier BA; Kliebenstein DJ PLoS One; 2007 Dec; 2(12):e1322. PubMed ID: 18094747 [TBL] [Abstract][Full Text] [Related]
26. Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea. Augustine R; Mukhopadhyay A; Bisht NC Plant Biotechnol J; 2013 Sep; 11(7):855-66. PubMed ID: 23721233 [TBL] [Abstract][Full Text] [Related]
27. Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment. Guo L; Yang R; Gu Z J Sci Food Agric; 2016 Oct; 96(13):4329-36. PubMed ID: 26786856 [TBL] [Abstract][Full Text] [Related]
28. Identification and expression pattern analysis of BoMYB51 involved in indolic glucosinolate biosynthesis from broccoli (Brassica oleracea var. italica). Yu Q; Hao G; Zhou J; Wang J; Evivie ER; Li J Biochem Biophys Res Commun; 2018 Jun; 501(2):598-604. PubMed ID: 29753738 [TBL] [Abstract][Full Text] [Related]
29. Increased Glucosinolate Production in Brassica oleracea var. italica Cell Cultures Due to Coronatine Activated Genes Involved in Glucosinolate Biosynthesis. Sánchez-Pujante PJ; Sabater-Jara AB; Belchí-Navarro S; Pedreño MA; Almagro L J Agric Food Chem; 2019 Jan; 67(1):102-111. PubMed ID: 30566344 [TBL] [Abstract][Full Text] [Related]
30. Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by suppressing GSL-ALK gene family. Augustine R; Bisht NC Sci Rep; 2015 Dec; 5():18005. PubMed ID: 26657321 [TBL] [Abstract][Full Text] [Related]
31. Bioavailability of Glucoraphanin and Sulforaphane from High-Glucoraphanin Broccoli. Sivapalan T; Melchini A; Saha S; Needs PW; Traka MH; Tapp H; Dainty JR; Mithen RF Mol Nutr Food Res; 2018 Sep; 62(18):e1700911. PubMed ID: 29266773 [TBL] [Abstract][Full Text] [Related]
32. Isolation and expression of glucosinolate synthesis genes CYP83A1 and CYP83B1 in Pak Choi (Brassica rapa L. ssp. chinensis var. communis (N. Tsen & S.H. Lee) Hanelt). Zhu B; Wang Z; Yang J; Zhu Z; Wang H Int J Mol Sci; 2012; 13(5):5832-5843. PubMed ID: 22754334 [TBL] [Abstract][Full Text] [Related]
33. Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization. Lee YS; Ku KM; Becker TM; Juvik JA PLoS One; 2017; 12(9):e0185112. PubMed ID: 28945821 [TBL] [Abstract][Full Text] [Related]
34. Reducing progoitrin and enriching glucoraphanin in Brassica napus seeds through silencing of the GSL-ALK gene family. Liu Z; Hirani AH; McVetty PB; Daayf F; Quiros CF; Li G Plant Mol Biol; 2012 May; 79(1-2):179-89. PubMed ID: 22477389 [TBL] [Abstract][Full Text] [Related]
35. Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1. Zang YX; Kim JH; Park YD; Kim DH; Hong SB BMB Rep; 2008 Jun; 41(6):472-8. PubMed ID: 18593532 [TBL] [Abstract][Full Text] [Related]
36. Glucoraphanin and sulforaphane biosynthesis by melatonin mediating nitric oxide in hairy roots of broccoli (Brassica oleracea L. var. italica Planch): insights from transcriptome data. Ma S; Bao J; Lu Y; Lu X; Tian P; Zhang X; Yang J; Shi X; Pu Z; Li S BMC Plant Biol; 2022 Aug; 22(1):403. PubMed ID: 35974315 [TBL] [Abstract][Full Text] [Related]
37. Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores. Poelman EH; Van Dam NM; Van Loon JJ; Vet LE; Dicke M Ecology; 2009 Jul; 90(7):1863-77. PubMed ID: 19694135 [TBL] [Abstract][Full Text] [Related]
38. Assessing the Fate and Bioavailability of Glucosinolates in Kale ( Hwang ES; Bornhorst GM; Oteiza PI; Mitchell AE J Agric Food Chem; 2019 Aug; 67(34):9492-9500. PubMed ID: 31374175 [TBL] [Abstract][Full Text] [Related]
39. Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds. Sotelo T; Soengas P; Velasco P; Rodríguez VM; Cartea ME PLoS One; 2014; 9(3):e91428. PubMed ID: 24614913 [TBL] [Abstract][Full Text] [Related]
40. Epithiospecifier protein activity in broccoli: the link between terminal alkenyl glucosinolates and sulphoraphane nitrile. Williams DJ; Critchley C; Pun S; Nottingham S; O'Hare TJ Phytochemistry; 2008 Nov; 69(16):2765-73. PubMed ID: 18977005 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]