BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 31190369)

  • 1. A Textile Platform Using Continuous Aligned and Textured Composite Microfibers to Engineer Tendon-to-Bone Interface Gradient Scaffolds.
    Calejo I; Costa-Almeida R; Reis RL; Gomes ME
    Adv Healthc Mater; 2019 Aug; 8(15):e1900200. PubMed ID: 31190369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation.
    Wu S; Wang Y; Streubel PN; Duan B
    Acta Biomater; 2017 Oct; 62():102-115. PubMed ID: 28864251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual-phase scaffold produced by rotary jet spinning and electrospinning for tendon tissue engineering.
    Guner MB; Dalgic AD; Tezcaner A; Yilanci S; Keskin D
    Biomed Mater; 2020 Oct; 15(6):065014. PubMed ID: 32438362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering.
    Yang G; Lin H; Rothrauff BB; Yu S; Tuan RS
    Acta Biomater; 2016 Apr; 35():68-76. PubMed ID: 26945631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.
    Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I
    Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.
    Ambre AH; Katti DR; Katti KS
    J Biomed Mater Res A; 2015 Jun; 103(6):2077-101. PubMed ID: 25331212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: high-resolution tomography and in vitro study.
    Shkarina S; Shkarin R; Weinhardt V; Melnik E; Vacun G; Kluger PJ; Loza K; Epple M; Ivlev SI; Baumbach T; Surmeneva MA; Surmenev RA
    Sci Rep; 2018 Jun; 8(1):8907. PubMed ID: 29891842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced biological properties of biomimetic apatite fabricated polycaprolactone/chitosan nanofibrous bio-composite for tendon and ligament regeneration.
    Wu G; Deng X; Song J; Chen F
    J Photochem Photobiol B; 2018 Jan; 178():27-32. PubMed ID: 29101870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aligned Gelatin Microribbon Scaffolds with Hydroxyapatite Gradient for Engineering the Bone-Tendon Interface.
    Stanton AE; Tong X; Jing SL; Behn A; Storaci H; Yang F
    Tissue Eng Part A; 2022 Aug; 28(15-16):712-723. PubMed ID: 35229651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering.
    Ba Linh NT; Min YK; Lee BT
    J Biomater Sci Polym Ed; 2013; 24(5):520-38. PubMed ID: 23565865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering.
    Rajzer I; Menaszek E; Kwiatkowski R; Planell JA; Castano O
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():183-90. PubMed ID: 25280695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells.
    Zandi M; Mirzadeh H; Mayer C; Urch H; Eslaminejad MB; Bagheri F; Mivehchi H
    J Biomed Mater Res A; 2010 Mar; 92(4):1244-55. PubMed ID: 19322878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering.
    Chen P; Liu L; Pan J; Mei J; Li C; Zheng Y
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():325-335. PubMed ID: 30678918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tendon Tissue Engineering: Effects of Mechanical and Biochemical Stimulation on Stem Cell Alignment on Cell-Laden Hydrogel Yarns.
    Rinoldi C; Costantini M; Kijeńska-Gawrońska E; Testa S; Fornetti E; Heljak M; Ćwiklińska M; Buda R; Baldi J; Cannata S; Guzowski J; Gargioli C; Khademhosseini A; Swieszkowski W
    Adv Healthc Mater; 2019 Apr; 8(7):e1801218. PubMed ID: 30725521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite.
    Phipps MC; Clem WC; Catledge SA; Xu Y; Hennessy KM; Thomas V; Jablonsky MJ; Chowdhury S; Stanishevsky AV; Vohra YK; Bellis SL
    PLoS One; 2011 Feb; 6(2):e16813. PubMed ID: 21346817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun poly(d,l-lactide)/gelatin/glass-ceramics tricomponent nanofibrous scaffold for bone tissue engineering.
    Bochicchio B; Barbaro K; De Bonis A; Rau JV; Pepe A
    J Biomed Mater Res A; 2020 May; 108(5):1064-1076. PubMed ID: 31967393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printed PCL framework assembling ECM-inspired multi-layer mineralized GO-Col-HAp microscaffold for in situ mandibular bone regeneration.
    Yang Y; He H; Miao F; Yu M; Wu X; Liu Y; Fu J; Chen J; Ma L; Chen X; Peng X; You Z; Zhou C
    J Transl Med; 2024 Mar; 22(1):224. PubMed ID: 38429799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering.
    Vaquette C; Kahn C; Frochot C; Nouvel C; Six JL; De Isla N; Luo LH; Cooper-White J; Rahouadj R; Wang X
    J Biomed Mater Res A; 2010 Sep; 94(4):1270-82. PubMed ID: 20694995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.