These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31191219)

  • 1. Analysis of Liquid Ensembles for Enhancing the Performance and Accuracy of Liquid State Machines.
    Wijesinghe P; Srinivasan G; Panda P; Roy K
    Front Neurosci; 2019; 13():504. PubMed ID: 31191219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SpiLinC: Spiking Liquid-Ensemble Computing for Unsupervised Speech and Image Recognition.
    Srinivasan G; Panda P; Roy K
    Front Neurosci; 2018; 12():524. PubMed ID: 30190670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended liquid state machines for speech recognition.
    Deckers L; Tsang IJ; Van Leekwijck W; Latré S
    Front Neurosci; 2022; 16():1023470. PubMed ID: 36389242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Online Structural Plasticity Rule for Generating Better Reservoirs.
    Roy S; Basu A
    Neural Comput; 2016 Nov; 28(11):2557-2584. PubMed ID: 27626967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid State Machine on SpiNNaker for Spatio-Temporal Classification Tasks.
    Patiño-Saucedo A; Rostro-González H; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2022; 16():819063. PubMed ID: 35360182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Liquid State Machines With Neural Plasticity for Video Activity Recognition.
    Soures N; Kudithipudi D
    Front Neurosci; 2019; 13():686. PubMed ID: 31333404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive structure evolution and biologically plausible synaptic plasticity for recurrent spiking neural networks.
    Pan W; Zhao F; Zeng Y; Han B
    Sci Rep; 2023 Oct; 13(1):16924. PubMed ID: 37805632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of synaptic connectivity on liquid state machine performance.
    Ju H; Xu JX; Chong E; VanDongen AM
    Neural Netw; 2013 Feb; 38():39-51. PubMed ID: 23232121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Digital Liquid State Machine With Biologically Inspired Learning and Its Application to Speech Recognition.
    Zhang Y; Li P; Jin Y; Choe Y
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2635-49. PubMed ID: 25643415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biologically Plausible Class Discrimination Based Recurrent Neural Network Training for Motor Pattern Generation.
    Wijesinghe P; Liyanagedera C; Roy K
    Front Neurosci; 2020; 14():772. PubMed ID: 33013282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-Inspired Evolutionary Model of Spiking Neural Networks in Ionic Liquid Space.
    Iranmehr E; Shouraki SB; Faraji MM; Bagheri N; Linares-Barranco B
    Front Neurosci; 2019; 13():1085. PubMed ID: 31787863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid state machine with dendritically enhanced readout for low-power, neuromorphic VLSI implementations.
    Roy S; Banerjee A; Basu A
    IEEE Trans Biomed Circuits Syst; 2014 Oct; 8(5):681-95. PubMed ID: 25361513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid state machines and cultured cortical networks: the separation property.
    Dockendorf KP; Park I; He P; Príncipe JC; DeMarse TB
    Biosystems; 2009 Feb; 95(2):90-7. PubMed ID: 18761392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The NEF-SPA Approach as a Framework for Developing a Neurobiologically Inspired Spiking Neural Network Model for Speech Production.
    Kröger BJ
    J Integr Neurosci; 2023 Aug; 22(5):124. PubMed ID: 37735137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Efficiency of a Modular Reservoir Network for Image Recognition.
    Dai Y; Yamamoto H; Sakuraba M; Sato S
    Front Comput Neurosci; 2021; 15():594337. PubMed ID: 33613220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knowledge distillation with ensembles of convolutional neural networks for medical image segmentation.
    Noothout JMH; Lessmann N; van Eede MC; van Harten LD; Sogancioglu E; Heslinga FG; Veta M; van Ginneken B; Išgum I
    J Med Imaging (Bellingham); 2022 Sep; 9(5):052407. PubMed ID: 35692896
    [No Abstract]   [Full Text] [Related]  

  • 18. Reinforcement Learning With Low-Complexity Liquid State Machines.
    Ponghiran W; Srinivasan G; Roy K
    Front Neurosci; 2019; 13():883. PubMed ID: 31507361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Density Liquid-State Machine Circuitry for Time-Series Forecasting.
    Rosselló JL; Alomar ML; Morro A; Oliver A; Canals V
    Int J Neural Syst; 2016 Aug; 26(5):1550036. PubMed ID: 26906454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agreeing to Stop: Reliable Latency-Adaptive Decision Making via Ensembles of Spiking Neural Networks.
    Chen J; Park S; Simeone O
    Entropy (Basel); 2024 Jan; 26(2):. PubMed ID: 38392381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.