These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31191289)

  • 1. Assistive Arm-Exoskeleton Control Based on Human Muscular Manipulability.
    Petrič T; Peternel L; Morimoto J; Babič J
    Front Neurorobot; 2019; 13():30. PubMed ID: 31191289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.
    Peternel L; Noda T; Petrič T; Ude A; Morimoto J; Babič J
    PLoS One; 2016; 11(2):e0148942. PubMed ID: 26881743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometry-aware manipulability learning, tracking, and transfer.
    Jaquier N; Rozo L; Caldwell DG; Calinon S
    Int J Rob Res; 2021 Feb; 40(2-3):624-650. PubMed ID: 33994629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulability Inclusive Principle for Assistive Result Evaluation of Assistive Mechanism.
    Liang W; Yu Y
    J Healthc Eng; 2018; 2018():2767129. PubMed ID: 30344989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Neural Control of a Kinematically Redundant Exoskeleton Robot Using Brain-Machine Interfaces.
    Li Z; Li J; Zhao S; Yuan Y; Kang Y; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3558-3571. PubMed ID: 30346293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impedance Control of a 2-DOF Spherical 5-Bar Exoskeleton for Physical Human-Robot Interaction During Rehabilitation and Assessment.
    Wolbrecht E; Ketkar V; Perry JC
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human arm weight compensation in rehabilitation robotics: efficacy of three distinct methods.
    Just F; Özen Ö; Tortora S; Klamroth-Marganska V; Riener R; Rauter G
    J Neuroeng Rehabil; 2020 Feb; 17(1):13. PubMed ID: 32024528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Human-Robot Co-Manipulation Approach Based on Human Sensorimotor Information.
    Peternel L; Tsagarakis N; Ajoudani A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):811-822. PubMed ID: 28436880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects.
    Pirondini E; Coscia M; Marcheschi S; Roas G; Salsedo F; Frisoli A; Bergamasco M; Micera S
    J Neuroeng Rehabil; 2016 Jan; 13():9. PubMed ID: 26801620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement Learning and Control of a Lower Extremity Exoskeleton for Squat Assistance.
    Luo S; Androwis G; Adamovich S; Su H; Nunez E; Zhou X
    Front Robot AI; 2021; 8():702845. PubMed ID: 34350214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking the Effects on Human-Exoskeleton Interaction of Trajectory, Admittance and EMG-Triggered Exoskeleton Movement Control.
    Rodrigues-Carvalho C; Fernández-García M; Pinto-Fernández D; Sanz-Morere C; Barroso FO; Borromeo S; Rodríguez-Sánchez C; Moreno JC; Del-Ama AJ
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of robotic manipulability indices to evaluate thumb performance during smartphone touch operations.
    Endo H
    Ergonomics; 2015; 58(5):736-47. PubMed ID: 25434697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction learning control with movement primitives for lower limb exoskeleton.
    Wang J; Wu D; Gao Y; Dong W
    Front Neurorobot; 2022; 16():1086578. PubMed ID: 36605521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedforward model based arm weight compensation with the rehabilitation robot ARMin.
    Just F; Ozen O; Tortora S; Riener R; Rauter G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():72-77. PubMed ID: 28813796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric Cooperation Control of Dual-Arm Exoskeletons Using Human Collaborative Manipulation Models.
    Li Z; Li G; Wu X; Kan Z; Su H; Liu Y
    IEEE Trans Cybern; 2022 Nov; 52(11):12126-12139. PubMed ID: 34637389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and assessment of a hand assist device: GRIPIT.
    Kim B; In H; Lee DY; Cho KJ
    J Neuroeng Rehabil; 2017 Feb; 14(1):15. PubMed ID: 28222759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Learning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation.
    Deng M; Li Z; Kang Y; Chen CLP; Chu X
    IEEE Trans Cybern; 2020 Jan; 50(1):112-125. PubMed ID: 30183653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human movement training with a cable driven ARm EXoskeleton (CAREX).
    Mao Y; Jin X; Gera Dutta G; Scholz JP; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):84-92. PubMed ID: 24919202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.