BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31191419)

  • 1. Driving Style Recognition Based on Electroencephalography Data From a Simulated Driving Experiment.
    Yan F; Liu M; Ding C; Wang Y; Yan L
    Front Psychol; 2019; 10():1254. PubMed ID: 31191419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driving behavior recognition using EEG data from a simulated car-following experiment.
    Yang L; Ma R; Zhang HM; Guan W; Jiang S
    Accid Anal Prev; 2018 Jul; 116():30-40. PubMed ID: 29174606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drivers trust, acceptance, and takeover behaviors in fully automated vehicles: Effects of automated driving styles and driver's driving styles.
    Ma Z; Zhang Y
    Accid Anal Prev; 2021 Sep; 159():106238. PubMed ID: 34182321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous overtaking and learning styles with varied EEG patterns in a reinforced driving task.
    Zhao S; Guan W; Qi G; Li P
    Accid Anal Prev; 2022 Jun; 171():106665. PubMed ID: 35421817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG-based emergency braking intention detection during simulated driving.
    Liang X; Yu Y; Liu Y; Liu K; Liu Y; Zhou Z
    Biomed Eng Online; 2023 Jul; 22(1):65. PubMed ID: 37393355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of Visual and Non-visual Learners Using Electroencephalographic Alpha and Gamma Activities.
    Jawed S; Amin HU; Malik AS; Faye I
    Front Behav Neurosci; 2019; 13():86. PubMed ID: 31133829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Analysis of Classification and Spatiotemporal Distribution Characteristics of Ride-Hailing Driver's Driving Style: A Case Study in China.
    Liu R; Yu H; Ren Y; Liu S
    Int J Environ Res Public Health; 2022 Aug; 19(15):. PubMed ID: 35955090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Driving behavior analysis and classification by vehicle OBD data using machine learning.
    Kumar R; Jain A
    J Supercomput; 2023 May; ():1-20. PubMed ID: 37359337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.
    Li X; Yan X; Wu J; Radwan E; Zhang Y
    Accid Anal Prev; 2016 Dec; 97():1-18. PubMed ID: 27565040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males.
    Chen J; Wang H; Wang Q; Hua C
    Neuropsychologia; 2019 Jun; 129():200-211. PubMed ID: 30995455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Driving style recognition and comparisons among driving tasks based on driver behavior in the online car-hailing industry.
    Ma Y; Li W; Tang K; Zhang Z; Chen S
    Accid Anal Prev; 2021 May; 154():106096. PubMed ID: 33770720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Driving comfort, enjoyment and acceptance of automated driving - effects of drivers' age and driving style familiarity.
    Hartwich F; Beggiato M; Krems JF
    Ergonomics; 2018 Aug; 61(8):1017-1032. PubMed ID: 29451092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature selection for driving style and skill clustering using naturalistic driving data and driving behavior questionnaire.
    Chen Y; Wang K; Lu JJ
    Accid Anal Prev; 2023 Jun; 185():107022. PubMed ID: 36931183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Systematic Methodology to Evaluate Prediction Models for Driving Style Classification.
    Silva I; Eugenio Naranjo J
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32197384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Performance by Interpretable Low-Frequency Electroencephalogram Oscillations in the Machine Learning-Based Diagnosis of Post-traumatic Stress Disorder.
    Shim M; Im CH; Lee SH; Hwang HJ
    Front Neuroinform; 2022; 16():811756. PubMed ID: 35571868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IoT On-Board System for Driving Style Assessment.
    Jachimczyk B; Dziak D; Czapla J; Damps P; Kulesza WJ
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29673201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emotion classification using single-channel scalp-EEG recording.
    Jalilifard A; Brigante Pizzolato E; Kafiul Islam M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():845-849. PubMed ID: 28268456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Driver's Intention of Lane Change by Augmenting Sensor Information Using Machine Learning Techniques.
    Kim IH; Bong JH; Park J; Park S
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28604582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting slow eye movement for recognizing driver's sleep onset period with EEG features.
    Yingying Jiao ; Bao-Liang Lu
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4658-4661. PubMed ID: 28269313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research on a successively increasing feature selection algorithm of EEG signal for driving fatigue based on SVM].
    Xie H; Yang S; Xia B; Yang W; Zhou N
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Dec; 30(6):1321-5. PubMed ID: 24645619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.