These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 31191562)

  • 1. Functional, Structural and Biochemical Features of Plant Serinyl-Glutathione Transferases.
    Sylvestre-Gonon E; Law SR; Schwartz M; Robe K; Keech O; Didierjean C; Dubos C; Rouhier N; Hecker A
    Front Plant Sci; 2019; 10():608. PubMed ID: 31191562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The still mysterious roles of cysteine-containing glutathione transferases in plants.
    Lallement PA; Brouwer B; Keech O; Hecker A; Rouhier N
    Front Pharmacol; 2014; 5():192. PubMed ID: 25191271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs).
    Moons A
    Vitam Horm; 2005; 72():155-202. PubMed ID: 16492471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple roles for plant glutathione transferases in xenobiotic detoxification.
    Cummins I; Dixon DP; Freitag-Pohl S; Skipsey M; Edwards R
    Drug Metab Rev; 2011 May; 43(2):266-80. PubMed ID: 21425939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant glutathione transferases.
    Edwards R; Dixon DP
    Methods Enzymol; 2005; 401():169-86. PubMed ID: 16399386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione transferases: a structural perspective.
    Oakley A
    Drug Metab Rev; 2011 May; 43(2):138-51. PubMed ID: 21428697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications.
    Rossjohn J; Polekhina G; Feil SC; Allocati N; Masulli M; Di Illio C; Parker MW
    Structure; 1998 Jun; 6(6):721-34. PubMed ID: 9655824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. THE FUNCTIONS AND REGULATION OF GLUTATHIONE S-TRANSFERASES IN PLANTS.
    Marrs KA
    Annu Rev Plant Physiol Plant Mol Biol; 1996 Jun; 47():127-158. PubMed ID: 15012285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles for glutathione transferases in plant secondary metabolism.
    Dixon DP; Skipsey M; Edwards R
    Phytochemistry; 2010 Mar; 71(4):338-50. PubMed ID: 20079507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione S-Transferase Enzymes in Plant-Pathogen Interactions.
    Gullner G; Komives T; Király L; Schröder P
    Front Plant Sci; 2018; 9():1836. PubMed ID: 30622544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and Structural Insights on the Poplar Tau Glutathione Transferase GSTU19 and 20 Paralogs Binding Flavonoids.
    Sylvestre-Gonon E; Morette L; Viloria M; Mathiot S; Boutilliat A; Favier F; Rouhier N; Didierjean C; Hecker A
    Front Mol Biosci; 2022; 9():958586. PubMed ID: 36032685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical Functions of Glutathione S-Transferase Family of
    Zhuge XL; Xu H; Xiu ZJ; Yang HL
    Front Plant Sci; 2020; 11():364. PubMed ID: 32308662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity of Glutathione S-Transferases (GSTs) in Cyanobacteria with Reference to Their Structures, Substrate Recognition and Catalytic Functions.
    ShylajaNaciyar M; Karthick L; Prakasam PA; Deviram G; Uma L; Prabaharan D; Saha SK
    Microorganisms; 2020 May; 8(5):. PubMed ID: 32403363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications.
    Nianiou-Obeidat I; Madesis P; Kissoudis C; Voulgari G; Chronopoulou E; Tsaftaris A; Labrou NE
    Plant Cell Rep; 2017 Jun; 36(6):791-805. PubMed ID: 28391528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The poplar Phi class glutathione transferase: expression, activity and structure of GSTF1.
    Pégeot H; Koh CS; Petre B; Mathiot S; Duplessis S; Hecker A; Didierjean C; Rouhier N
    Front Plant Sci; 2014; 5():712. PubMed ID: 25566286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of a biotic-stress-inducible glutathione transferase from Phaseolus vulgaris.
    Chronopoulou E; Madesis P; Tsaftaris A; Labrou NE
    Appl Biochem Biotechnol; 2014 Jan; 172(2):595-609. PubMed ID: 24104686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant glutathione transferases.
    Dixon DP; Lapthorn A; Edwards R
    Genome Biol; 2002; 3(3):REVIEWS3004. PubMed ID: 11897031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of ligands interaction models for glutathione-S-transferases from Plasmodium falciparum, human and mouse using enzyme kinetics and molecular docking.
    Al-Qattan MN; Mordi MN; Mansor SM
    Comput Biol Chem; 2016 Oct; 64():237-249. PubMed ID: 27475235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily.
    Sheehan D; Meade G; Foley VM; Dowd CA
    Biochem J; 2001 Nov; 360(Pt 1):1-16. PubMed ID: 11695986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of glutathione-S-transferases in zebrafish (Danio rerio).
    Glisic B; Mihaljevic I; Popovic M; Zaja R; Loncar J; Fent K; Kovacevic R; Smital T
    Aquat Toxicol; 2015 Jan; 158():50-62. PubMed ID: 25461745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.