BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31191569)

  • 21. Phenotyping: Using Machine Learning for Improved Pairwise Genotype Classification Based on Root Traits.
    Zhao J; Bodner G; Rewald B
    Front Plant Sci; 2016; 7():1864. PubMed ID: 27999587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial topology of organelle is a new breast cancer cell classifier.
    Wang L; Goldwag J; Bouyea M; Barra J; Matteson K; Maharjan N; Eladdadi A; Embrechts MJ; Intes X; Kruger U; Barroso M
    iScience; 2023 Jul; 26(7):107229. PubMed ID: 37519903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant organelle proteomics: collaborating for optimal cell function.
    Agrawal GK; Bourguignon J; Rolland N; Ephritikhine G; Ferro M; Jaquinod M; Alexiou KG; Chardot T; Chakraborty N; Jolivet P; Doonan JH; Rakwal R
    Mass Spectrom Rev; 2011; 30(5):772-853. PubMed ID: 21038434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Approaches to Characterize Organelle, Compartment, or Structure Purity.
    Mueller SJ; Hoernstein SN; Reski R
    Methods Mol Biol; 2017; 1511():13-28. PubMed ID: 27730599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a UPLC-MRM-based targeted proteomic method to profile subcellular organelle marker proteins from human liver tissues.
    Qiu X; Doyle LM; Wang MZ
    Sci Rep; 2022 Jun; 12(1):10985. PubMed ID: 35768540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of the Subcellular Distribution of Fluorescently Labeled Liposomes Using Confocal Microscopy.
    Solomon MA
    Methods Mol Biol; 2023; 2622():265-276. PubMed ID: 36781769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distribution of Pyruvate Dehydrogenase Complex Activities between Chloroplasts and Mitochondria from Leaves of Different Species.
    Lernmark U; Gardestrom P
    Plant Physiol; 1994 Dec; 106(4):1633-1638. PubMed ID: 12232437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Set of Organelle-Localizable Reactive Molecules for Mitochondrial Chemical Proteomics in Living Cells and Brain Tissues.
    Yasueda Y; Tamura T; Fujisawa A; Kuwata K; Tsukiji S; Kiyonaka S; Hamachi I
    J Am Chem Soc; 2016 Jun; 138(24):7592-602. PubMed ID: 27228550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation of endocitic organelles by density gradient centrifugation.
    de Araùjo ME; Huber LA; Stasyk T
    Methods Mol Biol; 2008; 424():317-31. PubMed ID: 18369872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying bona fide components of an organelle by isotope-coded labeling of subcellular fractions : an example in peroxisomes.
    Marelli M; Nesvizhskii AI; Aitchison JD
    Methods Mol Biol; 2008; 432():357-71. PubMed ID: 18370030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic Organellar Maps for Spatial Proteomics.
    Itzhak DN; Schessner JP; Borner GHH
    Curr Protoc Cell Biol; 2019 Jun; 83(1):e81. PubMed ID: 30489039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subcellular localization of hexokinase in pea leaves. Evidence for the predominance of a mitochondrially bound form.
    Cosio E; Bustamante E
    J Biol Chem; 1984 Jun; 259(12):7688-92. PubMed ID: 6736023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Screening of Twelve Pea (
    García Arteaga V; Kraus S; Schott M; Muranyi I; Schweiggert-Weisz U; Eisner P
    Foods; 2021 Apr; 10(4):. PubMed ID: 33918162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomics methods for subcellular proteome analysis.
    Drissi R; Dubois ML; Boisvert FM
    FEBS J; 2013 Nov; 280(22):5626-34. PubMed ID: 24034475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single organelle dynamics linked to 3D structure by correlative live-cell imaging and 3D electron microscopy.
    Fermie J; Liv N; Ten Brink C; van Donselaar EG; Müller WH; Schieber NL; Schwab Y; Gerritsen HC; Klumperman J
    Traffic; 2018 May; 19(5):354-369. PubMed ID: 29451726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane contact sites and cytoskeleton-membrane interactions in autophagy.
    Duckney PJ; Wang P; Hussey PJ
    FEBS Lett; 2022 Sep; 596(17):2093-2103. PubMed ID: 35648104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Proteomic Workflow Using High-Throughput De Novo Sequencing Towards Complementation of Genome Information for Improved Comparative Crop Science.
    Turetschek R; Lyon D; Desalegn G; Kaul HP; Wienkoop S
    Methods Mol Biol; 2016; 1394():233-243. PubMed ID: 26700053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stoichiometry and absolute quantification of proteins with mass spectrometry using fluorescent and isotope-labeled concatenated peptide standards.
    Nanavati D; Gucek M; Milne JL; Subramaniam S; Markey SP
    Mol Cell Proteomics; 2008 Feb; 7(2):442-7. PubMed ID: 18029347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Malate Dehydrogenases of Pisum sativum: Tissue Distribution and Properties of the Particulate Forms.
    Zschoche WC; Ting IP
    Plant Physiol; 1973 Jun; 51(6):1076-81. PubMed ID: 16658469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteomic Profiling of Leishmania donovani Promastigote Subcellular Organelles.
    Jardim A; Hardie DB; Boitz J; Borchers CH
    J Proteome Res; 2018 Mar; 17(3):1194-1215. PubMed ID: 29332401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.