These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31191586)

  • 1. An Automatic Field Plot Extraction Method From Aerial Orthomosaic Images.
    Khan Z; Miklavcic SJ
    Front Plant Sci; 2019; 10():683. PubMed ID: 31191586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Accuracy of High-Throughput Phenotyping From Unmanned Aerial Systems by Extracting Traits Directly From Orthorectified Images.
    Wang X; Silva P; Bello NM; Singh D; Evers B; Mondal S; Espinosa FP; Singh RP; Poland J
    Front Plant Sci; 2020; 11():587093. PubMed ID: 33193537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries.
    Haghighattalab A; González Pérez L; Mondal S; Singh D; Schinstock D; Rutkoski J; Ortiz-Monasterio I; Singh RP; Goodin D; Poland J
    Plant Methods; 2016; 12():35. PubMed ID: 27347001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic Microplot Localization Using UAV Images and a Hierarchical Image-Based Optimization Method.
    Mardanisamani S; Ayalew TW; Badhon MA; Khan NA; Hasnat G; Duddu H; Shirtliffe S; Vail S; Stavness I; Eramian M
    Plant Phenomics; 2021; 2021():9764514. PubMed ID: 34957413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach.
    Liebisch F; Kirchgessner N; Schneider D; Walter A; Hund A
    Plant Methods; 2015; 11():9. PubMed ID: 25793008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Multiple UAV Collaborative Driving Systems for Improving Field Phenotyping.
    Lee HS; Shin BS; Thomasson JA; Wang T; Zhang Z; Han X
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapeseed Seedling Stand Counting and Seeding Performance Evaluation at Two Early Growth Stages Based on Unmanned Aerial Vehicle Imagery.
    Zhao B; Zhang J; Yang C; Zhou G; Ding Y; Shi Y; Zhang D; Xie J; Liao Q
    Front Plant Sci; 2018; 9():1362. PubMed ID: 30298081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerial Images and Convolutional Neural Network for Cotton Bloom Detection.
    Xu R; Li C; Paterson AH; Jiang Y; Sun S; Robertson JS
    Front Plant Sci; 2017; 8():2235. PubMed ID: 29503653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Easy MPE: Extraction of Quality Microplot Images for UAV-Based High-Throughput Field Phenotyping.
    Tresch L; Mu Y; Itoh A; Kaga A; Taguchi K; Hirafuji M; Ninomiya S; Guo W
    Plant Phenomics; 2019; 2019():2591849. PubMed ID: 33313523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multispectral imaging and unmanned aerial systems for cotton plant phenotyping.
    Xu R; Li C; Paterson AH
    PLoS One; 2019; 14(2):e0205083. PubMed ID: 30811435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerial Imagery Analysis - Quantifying Appearance and Number of Sorghum Heads for Applications in Breeding and Agronomy.
    Guo W; Zheng B; Potgieter AB; Diot J; Watanabe K; Noshita K; Jordan DR; Wang X; Watson J; Ninomiya S; Chapman SC
    Front Plant Sci; 2018; 9():1544. PubMed ID: 30405675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV.
    Duan T; Zheng B; Guo W; Ninomiya S; Guo Y; Chapman SC
    Funct Plant Biol; 2016 Feb; 44(1):169-183. PubMed ID: 32480555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology.
    Cruzan MB; Weinstein BG; Grasty MR; Kohrn BF; Hendrickson EC; Arredondo TM; Thompson PG
    Appl Plant Sci; 2016 Sep; 4(9):. PubMed ID: 27672518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.
    Jiang Y; Li C; Paterson AH; Sun S; Xu R; Robertson J
    Front Plant Sci; 2017; 8():2233. PubMed ID: 29441074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth Monitoring and Yield Estimation of Maize Plant Using Unmanned Aerial Vehicle (UAV) in a Hilly Region.
    Sapkota S; Paudyal DR
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize.
    Zaman-Allah M; Vergara O; Araus JL; Tarekegne A; Magorokosho C; Zarco-Tejada PJ; Hornero A; Albà AH; Das B; Craufurd P; Olsen M; Prasanna BM; Cairns J
    Plant Methods; 2015; 11():35. PubMed ID: 26106438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis.
    Gong Y; Duan B; Fang S; Zhu R; Wu X; Ma Y; Peng Y
    Plant Methods; 2018; 14():70. PubMed ID: 30151031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Row selection in remote sensing from four-row plots of maize and sorghum based on repeatability and predictive modeling.
    Tolley SA; Carpenter N; Crawford MM; Delp EJ; Habib A; Tuinstra MR
    Front Plant Sci; 2023; 14():1202536. PubMed ID: 37409309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting
    Wu G; Miller ND; de Leon N; Kaeppler SM; Spalding EP
    Front Plant Sci; 2019; 10():1251. PubMed ID: 31681364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles.
    Wan L; Zhu J; Du X; Zhang J; Han X; Zhou W; Li X; Liu J; Liang F; He Y; Cen H
    J Exp Bot; 2021 Jun; 72(13):4691-4707. PubMed ID: 33963382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.