BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31191637)

  • 1. Finding the Intersection of Neuroplasticity, Stroke Recovery, and Learning: Scope and Contributions to Stroke Rehabilitation.
    Carey L; Walsh A; Adikari A; Goodin P; Alahakoon D; De Silva D; Ong KL; Nilsson M; Boyd L
    Neural Plast; 2019; 2019():5232374. PubMed ID: 31191637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding upper limb recovery after stroke.
    Buma F; Kwakkel G; Ramsey N
    Restor Neurol Neurosci; 2013; 31(6):707-22. PubMed ID: 23963341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain Functional Reserve in the Context of Neuroplasticity after Stroke.
    Dąbrowski J; Czajka A; Zielińska-Turek J; Jaroszyński J; Furtak-Niczyporuk M; Mela A; Poniatowski ŁA; Drop B; Dorobek M; Barcikowska-Kotowicz M; Ziemba A
    Neural Plast; 2019; 2019():9708905. PubMed ID: 30936915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress in clinical neurosciences: stroke recovery and rehabilitation.
    Teasell R; Bayona N; Salter K; Hellings C; Bitensky J
    Can J Neurol Sci; 2006 Nov; 33(4):357-64. PubMed ID: 17168160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic Variation and Neuroplasticity: Role in Rehabilitation After Stroke.
    Stewart JC; Cramer SC
    J Neurol Phys Ther; 2017 Jul; 41 Suppl 3(Suppl 3 IV STEP Spec Iss):S17-S23. PubMed ID: 28628592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing and inducing neuroplasticity with transcranial magnetic stimulation and robotics for motor function.
    O'Malley MK; Ro T; Levin HS
    Arch Phys Med Rehabil; 2006 Dec; 87(12 Suppl 2):S59-66. PubMed ID: 17140881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic treatment of the upper limb in chronic stroke and cerebral neuroplasticity: a systematic review.
    Bressi F; Bravi M; Campagnola B; Bruno D; Marzolla A; Santacaterina F; Miccinilli S; Sterzi S
    J Biol Regul Homeost Agents; 2020; 34(5 Suppl. 3):11-44. Technology in Medicine. PubMed ID: 33386032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain plasticity and rehabilitation in stroke patients.
    Hara Y
    J Nippon Med Sch; 2015; 82(1):4-13. PubMed ID: 25797869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interventions to Enhance Adaptive Plasticity after Stroke: From Mechanisms to Therapeutic Perspectives.
    Conforto A; Sterr A; Plow E; Cohen L
    Neural Plast; 2016; 2016():9153501. PubMed ID: 27418980
    [No Abstract]   [Full Text] [Related]  

  • 11. Hemispheric contributions to language reorganisation: An MEG study of neuroplasticity in chronic post stroke aphasia.
    Mohr B; MacGregor LJ; Difrancesco S; Harrington K; Pulvermüller F; Shtyrov Y
    Neuropsychologia; 2016 Dec; 93(Pt B):413-424. PubMed ID: 27063061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiotherapy based on problem-solving in upper limb function and neuroplasticity in chronic stroke patients: A case series.
    Carvalho R; Azevedo E; Marques P; Dias N; Cerqueira JJ
    J Eval Clin Pract; 2018 Jun; 24(3):552-560. PubMed ID: 29691951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroplasticity, learning and recovery after stroke: a critical evaluation of constraint-induced therapy.
    Sunderland A; Tuke A
    Neuropsychol Rehabil; 2005 May; 15(2):81-96. PubMed ID: 16353503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological Enhancement of Stroke Recovery.
    Kumar A; Kitago T
    Curr Neurol Neurosci Rep; 2019 May; 19(7):43. PubMed ID: 31144053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear medicine in the rehabilitative treatment evaluation in stroke recovery. Role of diaschisis resolution and cerebral reorganization.
    Mountz JM
    Eura Medicophys; 2007 Jun; 43(2):221-39. PubMed ID: 17268387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between intra- and interhemispheric remodeling of neural networks as a substrate of functional recovery after stroke: adaptive versus maladaptive reorganization.
    Xerri C; Zennou-Azogui Y; Sadlaoud K; Sauvajon D
    Neuroscience; 2014 Dec; 283():178-201. PubMed ID: 25014877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Intensity Interval Training After Stroke: An Opportunity to Promote Functional Recovery, Cardiovascular Health, and Neuroplasticity.
    Crozier J; Roig M; Eng JJ; MacKay-Lyons M; Fung J; Ploughman M; Bailey DM; Sweet SN; Giacomantonio N; Thiel A; Trivino M; Tang A
    Neurorehabil Neural Repair; 2018 Jun; 32(6-7):543-556. PubMed ID: 29676956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lost in translation: rethinking approaches to stroke recovery.
    Corbett D; Jeffers M; Nguemeni C; Gomez-Smith M; Livingston-Thomas J
    Prog Brain Res; 2015; 218():413-34. PubMed ID: 25890148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational models and motor learning paradigms: Could they provide insights for neuroplasticity after stroke? An overview.
    Kiper P; Szczudlik A; Venneri A; Stozek J; Luque-Moreno C; Opara J; Baba A; Agostini M; Turolla A
    J Neurol Sci; 2016 Oct; 369():141-148. PubMed ID: 27653881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional imaging of stroke recovery: an ecological review from a neural network perspective with an emphasis on motor systems.
    Ween JE
    J Neuroimaging; 2008 Jul; 18(3):227-36. PubMed ID: 18466275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.